-
-
Notifications
You must be signed in to change notification settings - Fork 601
/
Copy pathSOM_ex.R
160 lines (151 loc) · 4.57 KB
/
SOM_ex.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
rm(list = ls(all=TRUE))
##
## solution to Ex. 14.5
##
## ###############
## generate data
## ###############
gen.data <- function(sigma = 0.6) {
## center at (0, 0, 1)
theta1 = runif(30, -pi/8, pi/8)
phi1 = runif(30, 0, 2*pi)
x1 = sin(theta1)*cos(phi1) + rnorm(30, 0, sigma)
y1 = sin(theta1)*sin(phi1) + rnorm(30, 0, sigma)
z1 = cos(theta1) + rnorm(30, 0, sigma)
## center at (1, 0, 0)
theta2 = runif(30, pi/2-pi/4, pi/2+pi/4)
phi2 = runif(30, -pi/4, pi/4)
x2 = sin(theta2)*cos(phi2) + rnorm(30, 0, sigma)
y2 = sin(theta2)*sin(phi2) + rnorm(30, 0, sigma)
z2 = cos(theta2) + rnorm(30, 0, sigma)
## center at (0, 1, 0)
theta3 = runif(30, pi/2-pi/4, pi/2 + pi/4)
phi3 = runif(30, pi/2-pi/4, pi/2+pi/4)
x3 = sin(theta3)*cos(phi3) + rnorm(30, 0, sigma)
y3 = sin(theta3)*sin(phi3) + rnorm(30, 0, sigma)
z3 = cos(theta3) + rnorm(30, 0, sigma)
## ###############
## initialize
## ###############
q1 = q2 = 5 # K = 25
x = c(x1, x2, x3)
y = c(y1, y2, y3)
z = c(z1, z2, z3)
data = data.frame(x, y, z)
return(data)
}
coor.grid = expand.grid(1:5, 1:5)
## find the closest prototype to x in Euclidean distance in R^p
classify <- function(x, prototype, val = FALSE)
{
d = apply(prototype, 1, function(y) sum((x-y)^2))
if (val)
return(c(as.numeric(which.min(d)), min(d)))
else
return(as.numeric(which.min(d)))
}
## can be optimized
fulldist <- function(x)
{
n = nrow(x)
res = matrix(nrow = n, ncol = n)
for(i in 1:n)
{
for (j in 1:n)
{
res[i, j] = sqrt(sum((x[i, ]- x[j, ])^2))
}
}
return(res)
}
## calculate the distance of vector to a matrix
distance <- function(x, m)
{
res = apply(m, 1, function(y) sqrt(sum((x-y)^2)))
return(as.numeric(res))
}
plot.som <- function(data, coor, iter) {
#plot(expand.grid(1:5, 1:5), cex = 10, xlim=c(0.5, 5.5), ylim=c(0.5, 5.5), pty="s")
res = apply(data, 1, function(x) classify(x, coor))
res = res - 0.001 ## avoid divisible
res.x = floor(res/5)
res.y = res - res.x*5
#res.y[res.y == 0] == 5
res.x = res.x + 1 + runif(90, -0.3, 0.3) # avoid overlap
res.y = res.y + runif(90, -0.3, 0.3)
#points(res.x[1:30], res.y[1:30], col = "red", pch = 16, cex = 0.8)
plot(res.x[1:30], res.y[1:30], col = "red", pch = 16, xlim = c(0.5, 5.5), ylim = c(0.5, 5.5), pty="s", xlab = NA, ylab = NA, main = paste0("iteration ", iter))
points(res.x[31:60], res.y[31:60], col = "green", pch = 16)
points(res.x[61:90], res.y[61:90], col = "blue", pch = 16)
xy = expand.grid(1:5, 1:5)
symbols(xy[,1], xy[,2], circles = rep(0.45, nrow(xy)), add = T, inches = F)
}
run.som <- function(data, coor, R = 2, niter = 40, total.niter = niter * 90, fig = F) {
if (fig) {
## initial configuration
png("iter_0.png")
plot.som(data, coor, 0)
dev.off()
}
err = numeric(niter)
for (iter in 1:niter)
{
cat("iter = ", iter, '\n')
err[iter] = 0
# alpha = 1 / (1 - niter) * iter + 1 - 1 / (1 - niter)
# r = (R - 1) / (1 - niter) * iter + R - (R - 1) / (1 - niter)
for (i in 1:90)
{
iter.i = 90 * (iter - 1) + i
alpha = -1/total.niter*iter.i + 1
r = -R/total.niter*iter.i + R
# alpha = 1 / (1 - total.niter) * iter.i + 1 - 1 / (1 - total.niter)
# r = (R - 1) / (1 - total.niter) * iter.i + R - (R - 1) / (1 - total.niter)
xi = data[i, ]
mj.res = classify(xi, coor, val = TRUE)
mj.idx = mj.res[1]
err[iter] = err[iter] + mj.res[2]
# mj.idx = classify(xi, coor)
mj = coor.grid[mj.idx, ]
# distance in Q1xQ2
mk.idx = which(distance(mj, coor.grid) <= r)
mk = coor.grid[mk.idx, ]
xi.m = matrix(rep(1, length(mk.idx)),nrow = length(mk.idx)) %*% as.matrix(xi)
# distance in R^p
coor[mk.idx, ]= coor[mk.idx, ] + alpha*(xi.m - coor[mk.idx, ])
}
if (fig && (iter - 10*floor(iter/10) == 0))
{
png(paste0("iter_", iter, ".png"))
plot.som(data, coor, iter)
dev.off()
}
}
return(list(coor=coor, err=err))
}
# reconstruction error
calc_err <- function(data, coor, cl) {
# cl = apply(data, 1, function(x) classify(x, coor))
err = 0
for (i in 1:length(cl))
{
err = err + sum((data[i,] - coor[cl[i], ])^2)
}
return(err)
}
cpr.kmeans <- function() {
# kmeans
kcl = kmeans(data, 25)
kerr = calc_err(data, kcl$centers, kcl$cluster)
# plot reconstruction error
plot(err, xlab = "Iteration", ylab = "Reconstruction Error", col = "red", type="o", ylim = c(0,max(err)))
abline(h=kerr, col = "orange")
}
# run
# data = gen.data(0.06)
data = gen.data(0.6)
idx = sample(90, 25)
coor0 = data[idx, ]
res = run.som(data, coor0, niter = 40)
coor = res$coor
err = res$err