-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathspawn.v
81 lines (69 loc) · 2.98 KB
/
spawn.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
From iris.algebra Require Import excl.
From iris.base_logic.lib Require Import invariants.
From iris_simp_lang Require Export simp.
From iris.prelude Require Import options.
(** we don't have sums in the language but we can emulate them with tagged
pairs *)
Definition NONE: expr := (#false, #()).
Definition NONEV: val := (#false, #()).
Definition SOME: expr := λ: "v", (#true, "v").
Definition SOMEV (v:val): val := (#true, v).
Definition spawn : val :=
λ: "f",
let: "c" := ref NONE in
Fork ("c" <- SOME ("f" #())) ;; "c".
Definition join : val :=
rec: "join" "c" :=
let: "r" := !"c" in
if: Fst "r" then Snd "r"
else "join" "c".
(** The CMRA & functor we need. *)
(* Not bundling simpGS, as it may be shared with other users. *)
Class spawnG Σ := SpawnG { spawn_tokG :: inG Σ (exclR unitO) }.
Definition spawnΣ : gFunctors := #[GFunctor (exclR unitO)].
Global Instance subG_spawnΣ {Σ} : subG spawnΣ Σ → spawnG Σ.
Proof. solve_inG. Qed.
(** Now we come to the Iris part of the proof. *)
Section proof.
Context `{!simpGS Σ, !spawnG Σ} (N : namespace).
Definition spawn_inv (γ : gname) (l : loc) (Ψ : val → iProp Σ) : iProp Σ :=
∃ lv, l ↦ lv ∗ (⌜lv = NONEV⌝ ∨
∃ w, ⌜lv = SOMEV w⌝ ∗ (Ψ w ∨ own γ (Excl ()))).
Definition join_handle (l : loc) (Ψ : val → iProp Σ) : iProp Σ :=
∃ γ, own γ (Excl ()) ∗ inv N (spawn_inv γ l Ψ).
Global Instance spawn_inv_ne n γ l :
Proper (pointwise_relation val (dist n) ==> dist n) (spawn_inv γ l).
Proof. solve_proper. Qed.
Global Instance join_handle_ne n l :
Proper (pointwise_relation val (dist n) ==> dist n) (join_handle l).
Proof. solve_proper. Qed.
(** The main proofs. *)
Lemma spawn_spec (Ψ : val → iProp Σ) (f : val) :
{{{ WP f #() {{ Ψ }} }}} spawn f {{{ l, RET #l; join_handle l Ψ }}}.
Proof.
iIntros (Φ) "Hf HΦ". rewrite /spawn /=. wp_lam.
wp_alloc l as "Hl".
iMod (own_alloc (Excl ())) as (γ) "Hγ"; first done.
iMod (inv_alloc N _ (spawn_inv γ l Ψ) with "[Hl]") as "#?".
{ iNext. iExists NONEV. iFrame; eauto. }
wp_apply (wp_fork with "[Hf]").
- iNext. wp_bind (f _). iApply (wp_wand with "Hf"); iIntros (v) "Hv".
wp_pures. iInv N as (v') "[>Hl _]".
wp_store. iSplitL; last done. iIntros "!> !>". iExists (SOMEV v). iFrame. eauto.
- wp_pures. iApply "HΦ". rewrite /join_handle. eauto.
Qed.
Lemma join_spec (Ψ : val → iProp Σ) l :
{{{ join_handle l Ψ }}} join #l {{{ v, RET v; Ψ v }}}.
Proof.
iIntros (Φ) "H HΦ". iDestruct "H" as (γ) "[Hγ #?]".
iLöb as "IH". wp_rec. wp_bind (! _)%E. iInv N as (v) "[Hl Hinv]".
wp_load. iDestruct "Hinv" as "[%|Hinv]"; subst.
- iModIntro. iSplitL "Hl"; [iNext; iExists _; iFrame; eauto|].
wp_apply ("IH" with "Hγ [HΦ]"). auto.
- iDestruct "Hinv" as (v' ->) "[HΨ|Hγ']".
+ iModIntro. iSplitL "Hl Hγ"; [iNext; iExists _; iFrame; eauto|].
wp_pures. by iApply "HΦ".
+ iDestruct (own_valid_2 with "Hγ Hγ'") as %[].
Qed.
End proof.
#[export] Typeclasses Opaque join_handle.