-
Notifications
You must be signed in to change notification settings - Fork 286
/
Copy pathinference.py
executable file
·326 lines (274 loc) · 13.8 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import torch
import argparse
import os
import time
import accelerate
import cv2
import numpy as np
import torchaudio.functional
import torchvision.io
from PIL import Image
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.utils.import_utils import is_xformers_available
from insightface.app import FaceAnalysis
from omegaconf import OmegaConf
from transformers import Wav2Vec2Model, Wav2Vec2Processor, Wav2Vec2FeatureExtractor
from modules import UNet2DConditionModel, UNet3DConditionModel, VKpsGuider, AudioProjection
from pipelines import VExpressPipeline
from pipelines.utils import save_video
from pipelines.utils import retarget_kps
from pipelines.utils import zero_module
from datasets.utils import draw_kps_image
from pipelines.context import compute_context_indices, compute_num_context
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--unet_config_path', type=str, default='./model_ckpts/stable-diffusion-v1-5/unet/config.json')
parser.add_argument('--vae_path', type=str, default='./model_ckpts/sd-vae-ft-mse/')
parser.add_argument('--audio_encoder_path', type=str, default='./model_ckpts/wav2vec2-base-960h/')
parser.add_argument('--insightface_model_path', type=str, default='./model_ckpts/insightface_models/')
parser.add_argument('--denoising_unet_path', type=str, default='./model_ckpts/v-express/denoising_unet.bin')
parser.add_argument('--reference_net_path', type=str, default='./model_ckpts/v-express/reference_net.bin')
parser.add_argument('--v_kps_guider_path', type=str, default='./model_ckpts/v-express/v_kps_guider.bin')
parser.add_argument('--audio_projection_path', type=str, default='./model_ckpts/v-express/audio_projection.bin')
parser.add_argument('--motion_module_path', type=str, default='./model_ckpts/v-express/motion_module.bin')
parser.add_argument('--retarget_strategy', type=str, default='fix_face',
help='{fix_face, no_retarget, offset_retarget, naive_retarget}')
parser.add_argument('--dtype', type=str, default='fp16')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--gpu_id', type=int, default=0)
parser.add_argument('--do_multi_devices_inference', action='store_true')
parser.add_argument('--save_gpu_memory', action='store_true')
parser.add_argument('--num_pad_audio_frames', type=int, default=2)
parser.add_argument('--standard_audio_sampling_rate', type=int, default=16000)
parser.add_argument('--reference_image_path', type=str, default='./test_samples/emo/talk_emotion/ref.jpg')
parser.add_argument('--audio_path', type=str, default='./test_samples/emo/talk_emotion/aud.mp3')
parser.add_argument('--kps_path', type=str, default='./test_samples/emo/talk_emotion/kps.pth')
parser.add_argument('--output_path', type=str, default='./output/emo/talk_emotion.mp4')
parser.add_argument('--test_stage', type=str, default='stage_3')
parser.add_argument('--audio_embeddings_type', type=str, default='global', help='{global}')
parser.add_argument('--image_width', type=int, default=512)
parser.add_argument('--image_height', type=int, default=512)
parser.add_argument('--fps', type=float, default=30.0)
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--num_inference_steps', type=int, default=25)
parser.add_argument('--guidance_scale', type=float, default=3.5)
parser.add_argument('--context_frames', type=int, default=24)
parser.add_argument('--context_overlap', type=int, default=4)
parser.add_argument('--reference_attention_weight', default=0.95, type=float)
parser.add_argument('--audio_attention_weight', default=3., type=float)
args = parser.parse_args()
return args
def load_reference_net(unet_config_path, reference_net_path, dtype, device):
reference_net = UNet2DConditionModel.from_config(unet_config_path).to(dtype=dtype, device=device)
reference_net.load_state_dict(torch.load(reference_net_path, map_location="cpu"), strict=False)
print(f'Loaded weights of Reference Net from {reference_net_path}.')
return reference_net
def load_denoising_unet(inf_config_path, unet_config_path, denoising_unet_path, motion_module_path, dtype, device):
inference_config = OmegaConf.load(inf_config_path)
denoising_unet = UNet3DConditionModel.from_config_2d(
unet_config_path,
unet_additional_kwargs=inference_config.unet_additional_kwargs,
).to(dtype=dtype, device=device)
denoising_unet.load_state_dict(torch.load(denoising_unet_path, map_location="cpu"), strict=False)
print(f'Loaded weights of Denoising U-Net from {denoising_unet_path}.')
denoising_unet.load_state_dict(torch.load(motion_module_path, map_location="cpu"), strict=False)
print(f'Loaded weights of Denoising U-Net Motion Module from {motion_module_path}.')
return denoising_unet
def load_v_kps_guider(v_kps_guider_path, dtype, device):
v_kps_guider = VKpsGuider(320, block_out_channels=(16, 32, 96, 256)).to(dtype=dtype, device=device)
v_kps_guider.load_state_dict(torch.load(v_kps_guider_path, map_location="cpu"))
print(f'Loaded weights of V-Kps Guider from {v_kps_guider_path}.')
return v_kps_guider
def load_audio_projection(
audio_projection_path,
dtype,
device,
inp_dim: int,
mid_dim: int,
out_dim: int,
inp_seq_len: int,
out_seq_len: int,
):
audio_projection = AudioProjection(
dim=mid_dim,
depth=4,
dim_head=64,
heads=12,
num_queries=out_seq_len,
embedding_dim=inp_dim,
output_dim=out_dim,
ff_mult=4,
max_seq_len=inp_seq_len,
).to(dtype=dtype, device=device)
audio_projection.load_state_dict(torch.load(audio_projection_path, map_location='cpu'))
print(f'Loaded weights of Audio Projection from {audio_projection_path}.')
return audio_projection
def get_scheduler(inference_config_path):
inference_config = OmegaConf.load(inference_config_path)
scheduler_kwargs = OmegaConf.to_container(inference_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**scheduler_kwargs)
return scheduler
def main():
args = parse_args()
start_time = time.time()
if not args.do_multi_devices_inference:
# TODO
accelerator = None
device = torch.device(f'{args.device}:{args.gpu_id}' if args.device == 'cuda' else args.device)
else:
accelerator = accelerate.Accelerator()
device = torch.device(f'cuda:{accelerator.process_index}')
if args.dtype == 'fp16':
dtype = torch.float16
elif args.dtype == 'fp32':
dtype = torch.float32
elif args.dtype == 'bf16':
dtype = torch.bfloat16
else:
raise ValueError(f'Do not support {args.dtype}.')
vae_path = args.vae_path
audio_encoder_path = args.audio_encoder_path
vae = AutoencoderKL.from_pretrained(vae_path).to(dtype=dtype, device=device)
if args.audio_embeddings_type == 'global':
audio_encoder = Wav2Vec2Model.from_pretrained(audio_encoder_path).to(dtype=dtype, device=device)
audio_processor = Wav2Vec2Processor.from_pretrained(audio_encoder_path)
else:
raise ValueError(f'Do not support {args.audio_embeddings_type}. '
f'Now only support "global".')
unet_config_path = args.unet_config_path
reference_net_path = args.reference_net_path
denoising_unet_path = args.denoising_unet_path
v_kps_guider_path = args.v_kps_guider_path
audio_projection_path = args.audio_projection_path
motion_module_path = args.motion_module_path
inference_config_path = './inference_v2.yaml'
scheduler = get_scheduler(inference_config_path)
reference_net = load_reference_net(unet_config_path, reference_net_path, dtype, device)
denoising_unet = load_denoising_unet(
inference_config_path, unet_config_path, denoising_unet_path, motion_module_path,
dtype, device
)
v_kps_guider = load_v_kps_guider(v_kps_guider_path, dtype, device)
if args.audio_embeddings_type == 'global':
inp_dim = 768
else:
raise ValueError(f'Do not support {args.audio_embeddings_type}. '
f'Now only support "global".')
audio_projection = load_audio_projection(
audio_projection_path,
dtype,
device,
inp_dim=inp_dim,
mid_dim=denoising_unet.config.cross_attention_dim,
out_dim=denoising_unet.config.cross_attention_dim,
inp_seq_len=2 * (2 * args.num_pad_audio_frames + 1),
out_seq_len=2 * args.num_pad_audio_frames + 1,
)
if args.test_stage == 'stage_1':
for k, v in denoising_unet.named_parameters():
if 'temporal_transformer.proj_out' in k:
zero_module(v)
if 'attn2.to_out' in k:
zero_module(v)
elif args.test_stage == 'stage_2':
pass
elif args.test_stage == 'stage_3':
pass
else:
raise NotImplementedError(f"{args.test_stage}")
generator = torch.manual_seed(args.seed)
pipeline = VExpressPipeline(
vae=vae,
reference_net=reference_net,
denoising_unet=denoising_unet,
v_kps_guider=v_kps_guider,
audio_processor=audio_processor,
audio_encoder=audio_encoder,
audio_projection=audio_projection,
scheduler=scheduler,
).to(dtype=dtype, device=device)
app = FaceAnalysis(
providers=['CUDAExecutionProvider' if args.device == 'cuda' else 'CPUExecutionProvider'],
provider_options=[{'device_id': args.gpu_id}] if args.device == 'cuda' else [],
root=args.insightface_model_path,
)
app.prepare(ctx_id=0, det_size=(args.image_height, args.image_width))
reference_image = Image.open(args.reference_image_path).convert('RGB')
reference_image = reference_image.resize((args.image_height, args.image_width))
reference_image_for_kps = cv2.imread(args.reference_image_path)
reference_image_for_kps = cv2.resize(reference_image_for_kps, (args.image_width, args.image_height))
reference_kps = app.get(reference_image_for_kps)[0].kps[:3]
if args.save_gpu_memory:
del app
torch.cuda.empty_cache()
_, audio_waveform, meta_info = torchvision.io.read_video(args.audio_path, pts_unit='sec')
audio_sampling_rate = meta_info['audio_fps']
print(f'Length of audio is {audio_waveform.shape[1]} with the sampling rate of {audio_sampling_rate}.')
if audio_sampling_rate != args.standard_audio_sampling_rate:
audio_waveform = torchaudio.functional.resample(
audio_waveform,
orig_freq=audio_sampling_rate,
new_freq=args.standard_audio_sampling_rate,
)
audio_waveform = audio_waveform.mean(dim=0)
duration = audio_waveform.shape[0] / args.standard_audio_sampling_rate
init_video_length = int(duration * args.fps)
num_contexts = compute_num_context(init_video_length, args.context_frames, args.context_overlap)
context_indices = compute_context_indices(
num_context=num_contexts, context_size=args.context_frames, context_overlap=args.context_overlap
)
video_length = context_indices[-1][1] + 1
fps = video_length / duration
print(f'The corresponding video length is {video_length}. fps: {fps}')
kps_sequence = None
if args.kps_path != "":
assert os.path.exists(args.kps_path), f'{args.kps_path} does not exist'
kps_sequence = torch.tensor(torch.load(args.kps_path)) # [len, 3, 2]
print(f'The original length of kps sequence is {kps_sequence.shape[0]}.')
if kps_sequence.shape[0] > video_length:
kps_sequence = kps_sequence[:video_length, :, :]
kps_sequence = torch.nn.functional.interpolate(kps_sequence.permute(1, 2, 0), size=video_length, mode='linear')
kps_sequence = kps_sequence.permute(2, 0, 1)
print(f'The interpolated length of kps sequence is {kps_sequence.shape[0]}.')
retarget_strategy = args.retarget_strategy
if retarget_strategy == 'fix_face':
kps_sequence = torch.tensor([reference_kps] * video_length)
elif retarget_strategy == 'no_retarget':
kps_sequence = kps_sequence
elif retarget_strategy == 'offset_retarget':
kps_sequence = retarget_kps(reference_kps, kps_sequence, only_offset=True)
elif retarget_strategy == 'naive_retarget':
kps_sequence = retarget_kps(reference_kps, kps_sequence, only_offset=False)
else:
raise ValueError(f'The retarget strategy {retarget_strategy} is not supported.')
kps_images = []
for i in range(video_length):
kps_image = draw_kps_image(args.image_height, args.image_width, kps_sequence[i])
kps_images.append(Image.fromarray(kps_image))
video_tensor = pipeline(
reference_image=reference_image,
kps_images=kps_images,
audio_waveform=audio_waveform,
width=args.image_width,
height=args.image_height,
video_length=video_length,
num_inference_steps=args.num_inference_steps,
guidance_scale=args.guidance_scale,
context_frames=args.context_frames,
context_overlap=args.context_overlap,
reference_attention_weight=args.reference_attention_weight,
audio_attention_weight=args.audio_attention_weight,
num_pad_audio_frames=args.num_pad_audio_frames,
generator=generator,
do_multi_devices_inference=args.do_multi_devices_inference,
save_gpu_memory=args.save_gpu_memory,
)
if accelerator is None or accelerator.is_main_process:
save_video(video_tensor, args.audio_path, args.output_path, device, fps)
consumed_time = time.time() - start_time
generation_fps = video_tensor.shape[2] / consumed_time
print(f'The generated video has been saved at {args.output_path}. '
f'The generation time is {consumed_time:.1f} seconds. '
f'The generation FPS is {generation_fps:.2f}.')
if __name__ == '__main__':
main()