-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathShape.hpp
312 lines (263 loc) · 9.01 KB
/
Shape.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
#pragma once
#include <vector>
#include <cstdint>
#include <cassert>
#include <limits>
#include <algorithm>
//Shape represents the shape of a cycle of stitches on the bed.
// It is a map from stitch indices to needles, such that each stitch
//is on a needle adjacent to its index-wise neighbors.
//For a given count, shapes are controlled by a type and offset:
//Valid Shapes:
// . . o o o o . . .
// . . o o o o . . .
// . . . o o . . . .
// . . o o o o . . .
// . . . o o o . . .
// . . o o o . . . .
// . . o o o . . . .
// . . . o o o . . .
// . . o o o o . . .
// . . . o o . . . .
// . . o o o o . . .
// . . o o o . . . .
// . . o o o . . . .
// . . o o o o . . .
// . . . o o o . . .
// . . o o o o . . .
// . . o o o o . . .
// . . . o o o . . .
typedef uint32_t PackedShape;
struct Shape {
uint32_t roll = 0; //cycle starts at front left at roll zero; roll is ccw steps.
//shape will be evenly balanced between the beds, with some nibbles taken out of both sides:
//NOTE: will never have both front + back nibble on a side.
//NOTE: #nibbles + #stitches must be even
enum Nibble : uint8_t {
BackLeft = (1 << 0),
BackRight = (1 << 1),
FrontLeft = (1 << 2),
FrontRight = (1 << 3),
};
uint8_t nibbles = 0;
//------------------
Shape(uint32_t roll_, uint8_t nibbles_) : roll(roll_), nibbles(nibbles_) {
}
//------------------
#if 0 // this would be handy but can be avoided at the moment
//Shape::from_beds() inverts Shape::append_to_beds() [and also works if there is other stuff on the beds]
template< typename C, typename T >
static bool from_beds(C const &data, T const &gap, std::vector< T > const &front, std::vector< T > const &back, Shape *shape_, uint32_t *left_) {
assert(!data.empty()); //<-- shape doesn't make sense on empty bed.
assert(shape_);
auto &shape = *shape_;
assert(left_);
auto &left = *left_;
std::vector< uint32_t > front_inds(-1U);
std::vector< uint32_t > back_inds(-1U);
//find first data item:
uint32_t at = -1U;
bool at_front = false;
for (uint32_t i = 0; i < front.size(); ++i) {
if (Front[i]
}
}
#endif
//------------------
void size_to_range(uint32_t size, int32_t *front_min_, int32_t *front_max_, int32_t *back_min_, int32_t *back_max_, int32_t left = 0) const {
uint32_t width = size
+ ((nibbles & BackLeft) ? 1 : 0)
+ ((nibbles & FrontLeft) ? 1 : 0)
+ ((nibbles & BackRight) ? 1 : 0)
+ ((nibbles & FrontRight) ? 1 : 0);
assert(width % 2 == 0);
width /= 2;
uint32_t on_front = width
- ((nibbles & FrontLeft) ? 1 : 0)
- ((nibbles & FrontRight) ? 1 : 0);
uint32_t on_back = width
- ((nibbles & BackLeft) ? 1 : 0)
- ((nibbles & BackRight) ? 1 : 0);
assert(on_front + on_back == size);
int32_t front_left, back_left;
if (on_back && on_front) {
front_left = ((nibbles & FrontLeft) ? 1 : 0);
back_left = ((nibbles & BackLeft) ? 1 : 0);
} else {
front_left = back_left = 0;
}
if (on_front) {
if (front_min_) *front_min_ = front_left + left;
if (front_max_) *front_max_ = front_left + int32_t(on_front) - 1 + left;
} else {
if (front_min_) *front_min_ = std::numeric_limits< int32_t >::max();
if (front_max_) *front_max_ = std::numeric_limits< int32_t >::min();
}
if (on_back) {
if (back_min_) *back_min_ = back_left + left;
if (back_max_) *back_max_ = back_left + int32_t(on_back) - 1 + left;
} else {
if (back_min_) *back_min_ = std::numeric_limits< int32_t >::max();
if (back_max_) *back_max_ = std::numeric_limits< int32_t >::min();
}
//TODO: add some PARANOIA checks to make sure this lines up with append_to_beds...
}
//------------------
void size_index_to_bed_needle(uint32_t size, uint32_t index, char *bed_, int32_t *needle_) const {
assert(index < size);
assert(bed_);
auto &bed = *bed_;
assert(needle_);
auto &needle = *needle_;
//figure out how many items go on the back and how many on the front:
uint32_t width = size
+ ((nibbles & BackLeft) ? 1 : 0)
+ ((nibbles & FrontLeft) ? 1 : 0)
+ ((nibbles & BackRight) ? 1 : 0)
+ ((nibbles & FrontRight) ? 1 : 0);
assert(width % 2 == 0);
width /= 2;
uint32_t on_front = width
- ((nibbles & FrontLeft) ? 1 : 0)
- ((nibbles & FrontRight) ? 1 : 0);
uint32_t on_back = width
- ((nibbles & BackLeft) ? 1 : 0)
- ((nibbles & BackRight) ? 1 : 0);
assert(on_front + on_back == size);
index = (index + roll) % size;
int32_t front_left, back_left;
if (on_back && on_front) {
front_left = ((nibbles & FrontLeft) ? 1 : 0);
back_left = ((nibbles & BackLeft) ? 1 : 0);
} else {
front_left = back_left = 0;
}
if (index < on_front) {
bed = 'f';
needle = front_left + index;
} else { assert(index < size);
bed = 'b';
index -= on_front;
assert(index < on_back);
needle = back_left + on_back - 1 - index;
}
}
//------------------
//append_to_beds will position the current shape as-leftward-as-possible:
template< typename C, typename T >
void append_to_beds(C const &data, T const &gap, std::vector< T > *front_, std::vector< T > *back_) const {
assert(front_);
auto &front = *front_;
assert(back_);
auto &back = *back_;
//figure out how many items go on the back and how many on the front:
uint32_t width = uint32_t(data.size())
+ ((nibbles & BackLeft) ? 1 : 0)
+ ((nibbles & FrontLeft) ? 1 : 0)
+ ((nibbles & BackRight) ? 1 : 0)
+ ((nibbles & FrontRight) ? 1 : 0);
assert(width % 2 == 0);
width /= 2;
uint32_t on_front = width
- ((nibbles & FrontLeft) ? 1 : 0)
- ((nibbles & FrontRight) ? 1 : 0);
uint32_t on_back = width
- ((nibbles & BackLeft) ? 1 : 0)
- ((nibbles & BackRight) ? 1 : 0);
assert(on_front + on_back == data.size());
if (on_back && on_front) {
//add gaps as needed to get beds evened up (taking into account nibbles):
uint32_t front_add = ((nibbles & BackLeft) ? 1 : 0);
uint32_t back_add = ((nibbles & FrontLeft) ? 1 : 0);
while (front.size() + front_add < back.size() + back_add) front.emplace_back(gap);
while (back.size() + back_add < front.size() + front_add) back.emplace_back(gap);
if (nibbles & BackLeft) {
assert(!(nibbles & FrontLeft));
assert(front.size() + 1 == back.size());
} else if (nibbles & FrontLeft) {
assert(front.size() == back.size() + 1);
} else {
assert(front.size() == back.size());
}
}
//starting element in 'data' from roll; cw roll would make this much easier, but so be it:
uint32_t start = (-int32_t(roll) % int32_t(data.size())) + int32_t(data.size());
for (uint32_t i = 0; i < on_front; ++i) {
front.emplace_back(data[(start + i) % data.size()]);
}
for (uint32_t i = on_back - 1; i < on_back; --i) {
back.emplace_back(data[(start + on_front + i) % data.size()]);
}
if (on_front && on_back) {
//make sure beds are as (un-)even as expected:
assert(front.size() + ((nibbles & FrontRight) ? 1 : 0) == back.size() + ((nibbles & BackRight) ? 1 : 0));
}
}
//------------------
static uint32_t count_shapes_for(uint32_t count) {
if (count == 1) {
return 2;
} else if (count % 2 == 0) {
return 5 * count;
} else {
return 4 * count;
}
}
static std::vector< Shape > make_shapes_for(uint32_t count) {
std::vector< Shape > ret;
if (count == 1) {
ret.reserve(2);
ret.emplace_back(0, BackLeft);
ret.emplace_back(0, FrontLeft);
} else if (count % 2 == 0) {
ret.reserve(5 * count);
for (uint32_t i = 0; i < count; ++i) {
ret.emplace_back(i, uint8_t(0));
ret.emplace_back(i, uint8_t(BackLeft | BackRight));
ret.emplace_back(i, uint8_t(BackLeft | FrontRight));
ret.emplace_back(i, uint8_t(FrontLeft | BackRight));
ret.emplace_back(i, uint8_t(FrontLeft | FrontRight));
}
assert(ret.size() == count * 5);
} else {
ret.reserve(4 * count);
for (uint32_t i = 0; i < count; ++i) {
ret.emplace_back(i, BackLeft);
ret.emplace_back(i, FrontLeft);
ret.emplace_back(i, BackRight);
ret.emplace_back(i, FrontRight);
}
assert(ret.size() == count * 4);
}
//Uncomment this line to modify the order shapes are returned in (useful for demonstrating that scheduling may have a large set of equivalent possible shapes)
//std::rotate(ret.begin(), ret.begin() + ret.size() / 4, ret.end());
return ret;
}
uint32_t index_for(uint32_t count) const {
if (count % 2 == 0) {
uint32_t ret = roll * 5;
if (nibbles == 0) ret += 0;
else if (nibbles == (BackLeft | BackRight)) ret += 1;
else if (nibbles == (BackLeft | FrontRight)) ret += 2;
else if (nibbles == (FrontLeft | BackRight)) ret += 3;
else if (nibbles == (FrontLeft | FrontRight)) ret += 4;
else assert(0 && "invalid even nibbles config");
return ret;
} else {
uint32_t ret = roll * 4;
if (nibbles == BackLeft) ret += 0;
else if (nibbles == FrontLeft) ret += 1;
else if (nibbles == BackRight) ret += 2;
else if (nibbles == FrontRight) ret += 3;
else assert(0 && "invalid odd nibbles config");
return ret;
}
}
//------------------
PackedShape pack() const {
return uint32_t(nibbles) | (roll << 4);
}
static Shape unpack(PackedShape ps) {
return Shape(ps >> 4, ps & 0x0f);
}
};