-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathplan_transfers-best_expand.cpp
534 lines (446 loc) · 16.8 KB
/
plan_transfers-best_expand.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
#include "plan_transfers-helpers.hpp"
#include <iostream>
#include <map>
#include <unordered_map>
void best_expand(
Constraints const &constraints,
BedNeedle::Bed top_bed, std::vector< NeedleRollGoal > const &top,
BedNeedle::Bed bottom_bed, std::vector< NeedleRollGoal > const &bottom,
BedNeedle::Bed to_top_bed, std::vector< NeedleRollGoal > *to_top_,
BedNeedle::Bed to_bottom_bed, std::vector< NeedleRollGoal > *to_bottom_,
std::vector< Transfer > *plan_
) {
//Expand won't change the top bed's location, but will change the bottom bed's:
assert(top_bed == to_top_bed);
assert(bottom_bed != to_bottom_bed);
//make sure all output arrays exist:
assert(to_top_);
auto &to_top = *to_top_;
assert(to_bottom_);
auto &to_bottom = *to_bottom_;
assert(plan_);
auto &plan = *plan_;
//Clear output:
to_top.clear();
to_bottom.clear();
//NOTE: don't clear plan, only append.
//------------
//if no stitches on bottom, nothing to move, so done:
if (bottom.empty()) {
to_top = top;
to_bottom.clear();
return;
}
//Otherwise, Dijkstra-style search for optimal sequence of moves:
//Moves in 'expand' move a stitch from the bottom bed (or roll a stitch from the top bed) to the to_bottom bed
//Search state:
#pragma pack(push,1)
struct State {
//if 'l' or 'r' is < 0 or >= bottom.size(), this means that some top stitches are getting rolled
int32_t l; //index of left stitch
int32_t r; //index of right stitch
int32_t l_next_needle; //needle that the stitch at index l+1 'l' was moved to
int32_t r_prev_needle; //needle that the stitch at index r-1 was moved to
bool operator==(State const &o) const {
return l == o.l
&& r == o.r
&& l_next_needle == o.l_next_needle
&& r_prev_needle == o.r_prev_needle
;
};
std::string to_string() const {
return std::to_string(l) + " " + std::to_string(l_next_needle) + "." + std::to_string(r_prev_needle) + " " + std::to_string(r);
}
};
#pragma pack(pop)
static_assert(sizeof(State) == 4*4, "expand's State is packed");
struct HashState {
size_t operator()(State const &state) const {
static std::hash< std::string > hash;
return hash(std::string(reinterpret_cast< char const * >(&state), reinterpret_cast< char const * >(&state) + sizeof(state)));
}
};
//Let's do this in terms of the actions that can be applied:
struct Action {
enum Type : uint8_t {
None,
MoveLeft,
MoveRight,
Finish //charge for all the remaining top stitches
} type;
int32_t needle;
Action(Type type_, int32_t needle_) : type(type_), needle(needle_) { }
std::string to_string() const {
if (type == None) return "ENone";
else if (type == MoveLeft) return "EMoveLeft to " + std::to_string(needle);
else if (type == MoveRight) return "EMoveRight to " + std::to_string(needle);
else if (type == Finish) return "EFinish";
else {
assert(0 && "invalid move type");
return "!"; //never reached
}
}
};
struct Cost {
uint32_t penalty = 0;
bool operator<(Cost const &o) const {
return penalty < o.penalty;
}
bool operator==(Cost const &o) const {
return penalty == o.penalty;
}
};
struct StateInfo {
Cost cost;
State const *source;
Action action;
StateInfo(Cost const &cost_, State const *source_, Action const &action_) : cost(cost_), source(source_), action(action_) { }
};
std::multimap< Cost, const State * > todo;
std::unordered_map< State, StateInfo, HashState > best_source;
auto queue_state = [&](State const &state, Cost const &cost, State const *from, Action const &action) {
auto ret = best_source.insert(std::make_pair(state, StateInfo(cost, from, action)));
if (cost < ret.first->second.cost) {
ret.first->second = StateInfo(cost, from, action);
ret.second = true;
}
if (ret.second) {
todo.insert(std::make_pair( cost, &ret.first->first ));
}
};
auto apply_action = [&queue_state,&top,&bottom,&constraints](Action const &action, State const &state, Cost const &cost) {
//std::cout << " doing '" << action.to_string() << "'" << std::endl; //DEBUG
State next_state = state;
Cost next_cost = cost;
int32_t top_l = -(state.l + 1);
int32_t top_r = int32_t(top.size()) - 1 - (state.r - int32_t(bottom.size()));
assert(state.l <= state.r);
assert(top_l <= top_r);
if (action.type == Action::MoveLeft) {
if (state.l >= 0) {
//l is on bottom bed
next_cost.penalty += bottom[state.l].after_offset_and_roll(action.needle - bottom[state.l].needle, 0).penalty(constraints.min_free, constraints.max_free);
next_state.l -= 1;
next_state.l_next_needle = action.needle;
if (state.r == state.l) {
next_state.r += 1;
next_state.r_prev_needle = action.needle;
}
} else { assert(state.l < 0);
//l has wrapped to top bed
assert(top_l >= 0 && uint32_t(top_l) < top.size());
next_cost.penalty += top[top_l].after_offset_and_roll(action.needle - top[top_l].needle, -1).penalty(constraints.min_free, constraints.max_free);
next_state.l -= 1;
next_state.l_next_needle = action.needle;
//Ignore top_l == top_r case.
}
} else if (action.type == Action::MoveRight) {
if (state.r < int32_t(bottom.size())) {
//r is on bottom bed
assert(state.r >= 0);
next_cost.penalty += bottom[state.r].after_offset_and_roll(action.needle - bottom[state.r].needle, 0).penalty(constraints.min_free, constraints.max_free);
next_state.r += 1;
next_state.r_prev_needle = action.needle;
if (state.l == state.r) {
next_state.l -= 1;
next_state.l_next_needle = action.needle;
}
} else { assert(state.r >= int32_t(bottom.size()));
//r has wrapped to top bed
assert(top_r >= 0 && uint32_t(top_r) < top.size());
next_cost.penalty += top[top_r].after_offset_and_roll(action.needle - top[top_r].needle, 1).penalty(constraints.min_free, constraints.max_free);
next_state.r += 1;
next_state.r_prev_needle = action.needle;
//Ignore top_l == top_r case; as it's already a final state.
}
} else if (action.type == Action::Finish) {
//got to have done all bottom stitches:
assert(top_l >= 0 && top_r < int32_t(top.size()));
//charge for all the not-done top stitches:
for (int32_t i = top_l; i <= top_r; ++i) {
next_cost.penalty += top[i].penalty(constraints.min_free, constraints.max_free);
}
//cross the indices:
next_state.l = -1 - int32_t(top.size());
next_state.r = int32_t(bottom.size()) + int32_t(top.size());
assert( -(next_state.l + 1) == int32_t(top.size()) );
assert( int32_t(top.size()) - 1 - (next_state.r - int32_t(bottom.size())) == -1 );
assert(next_state.r - next_state.l >= int32_t(top.size() + bottom.size()) );
} else {
assert(0 && "Invalid action type");
}
//std::cout << " penalty " << next_cost.penalty << " from " << cost.penalty << std::endl; //DEBUG
assert(next_cost.penalty >= cost.penalty);
queue_state(next_state, next_cost, &state, action);
};
auto expand_state = [&](State const &state, Cost const &cost) {
assert(state.l <= state.r);
int32_t top_l = -(state.l + 1);
int32_t top_r = int32_t(top.size()) - 1 - (state.r - int32_t(bottom.size()));
assert(top_l <= top_r); //would have been flagged a final state otherwise
//First, and most important range: what do the current bridges, constraints, and slack allow in terms of racking?
int32_t min_ofs = -int32_t(constraints.max_racking);
int32_t max_ofs = int32_t(constraints.max_racking);
if (state.l == state.r) {
//no bridges to worry about!
} else {
//can't have | ofs + top[l].needle - state.l_prev_needle | > top[l].left_slack
//want -top[l].left_slack <= ofs + top[l].needle - state.l_prev_needle <= top[l].left_slack
// -top[l].left_slack - (top[l].needle - state.l_prev_needle) <= ofs <= top[l].left_slack - (top[l].needle - state.l_prev_needle)
int32_t l_needle = 0;
Slack l_slack = SlackForNoYarn;
if (state.l >= 0) {
assert(state.l >= 0 && state.l < int32_t(bottom.size()));
l_needle = bottom[state.l].needle;
l_slack = bottom[state.l].right_slack;
} else if (top_l < int32_t(top.size())) {
assert(top_l >= 0 && top_l < int32_t(top.size()));
l_needle = top[top_l].needle;
l_slack = top[top_l].left_slack;
} else if (top_l == int32_t(top.size())) {
assert(!bottom.empty());
l_needle = bottom.back().needle;
l_slack = bottom.back().right_slack;
}
int32_t r_needle = 0;
Slack r_slack = SlackForNoYarn;
if (state.r < int32_t(bottom.size())) {
assert(state.r >= 0 && state.r < int32_t(bottom.size()));
r_needle = bottom[state.r].needle;
r_slack = bottom[state.r].left_slack;
} else if (top_r >= 0) {
assert(top_r >= 0 && top_r < int32_t(top.size()));
r_needle = top[top_r].needle;
r_slack = top[top_r].right_slack;
} else if (top_r == -1) {
assert(!bottom.empty());
r_needle = bottom[0].needle;
r_slack = bottom[0].left_slack;
}
if (l_slack != SlackForNoYarn) {
min_ofs = std::max(min_ofs, -l_slack - (l_needle - state.l_next_needle));
max_ofs = std::min(max_ofs, l_slack - (l_needle - state.l_next_needle));
}
if (r_slack != SlackForNoYarn) {
min_ofs = std::max(min_ofs, -r_slack - (r_needle - state.r_prev_needle));
max_ofs = std::min(max_ofs, r_slack - (r_needle - state.r_prev_needle));
}
}
//if it is possible to finish, try the finishing move:
if (state.l < 0 && state.r >= int32_t(bottom.size())) {
assert(top_l >= 0 && top_r < int32_t(top.size()));
//only allow finish if zero offset is valid:
if (min_ofs <= 0 && 0 <= max_ofs) {
apply_action(Action(Action::Finish, 0), state, cost);
}
}
{ //left moves:
int32_t min, max;
if (state.l >= 0) {
assert(state.l < int32_t(bottom.size()));
//where can bottom stitch be dropped?
min = bottom[state.l].needle + min_ofs;
max = bottom[state.l].needle + max_ofs;
if (state.l == state.r) {
//first move, no limit.
} else {
//NOTE: mis-use of 'can_stack_' in asymmetric case; probably will use stacking priorities for this anyway,however.
//must place to the left of last placed stitch:
max = std::min(max, state.l_next_needle + (bottom[state.l].can_stack_right ? 0 : -1));
}
} else if (top_l >= int32_t(top.size())) {
//if we've somehow rolled *all* of the top stitches, not much to be done:
max = std::numeric_limits< int32_t >::min();
min = std::numeric_limits< int32_t >::max();
} else {
assert(top_l >= 0 && top_l < int32_t(top.size()));
min = top[top_l].needle + min_ofs;
max = top[top_l].needle + max_ofs;
//must place left of last-placed stitch:
//NOTE: mis-use of 'can_stack_' in asymmetric case; probably will use stacking priorities for this anyway,however.
max = std::min(max, state.l_next_needle + (top[top_l].can_stack_left ? 0 : -1));
if (state.r < int32_t(bottom.size())) {
//can't move at all if pinned by bottom stitch:
bool pinned = false;
// l --- o
// r ...
if (bottom[state.r].needle <= top[top_l].needle) {
pinned = true;
}
// l --- o
// r ...
if (top_l + 1 < int32_t(top.size()) && top[top_l+1].needle > bottom[state.r].needle) {
pinned = true;
}
// l ------.
// r -- o
if (top_l + 1 == int32_t(top.size()) && state.r + 1 < int32_t(bottom.size())) {
pinned = true;
}
if (pinned) {
max = std::numeric_limits< int32_t >::min();
min = std::numeric_limits< int32_t >::max();
}
}
}
min = std::max(min, constraints.min_free);
max = std::min(max, constraints.max_free);
for (int32_t needle = min; needle <= max; ++needle) {
apply_action(Action(Action::MoveLeft, needle), state, cost);
}
}
{ //right moves:
int32_t min, max;
if (state.r < int32_t(bottom.size())) {
assert(state.r >= 0);
//where can bottom stitch be dropped?
min = bottom[state.r].needle + min_ofs;
max = bottom[state.r].needle + max_ofs;
if (state.l == state.r) {
//first move, no limit.
} else {
//NOTE: mis-use of 'can_stack_' in asymmetric case; probably will use stacking priorities for this anyway,however.
//must place to the right of last placed stitch:
min = std::max(min, state.r_prev_needle + (bottom[state.r].can_stack_left ? 0 : +1));
}
} else if (top_r < 0) {
//if we've somehow rolled *all* of the top stitches, not much to be done
max = std::numeric_limits< int32_t >::min();
min = std::numeric_limits< int32_t >::max();
} else {
assert(top_r >= 0 && top_r < int32_t(top.size()));
min = top[top_r].needle + min_ofs;
max = top[top_r].needle + max_ofs;
//must place right of last-placed stitch:
//NOTE: mis-use of 'can_stack_' in asymmetric case; probably will use stacking priorities for this anyway,however.
min = std::max(min, state.r_prev_needle + (top[top_r].can_stack_right ? 0 : +1));
if (state.l >= 0) {
//can't move at all if pinned by bottom stitch:
bool pinned = false;
// o --- r
// .... l
if (bottom[state.l].needle >= top[top_r].needle) {
pinned = true;
}
// o --- r
// ... l
if (top_r - 1 >= 0 && top[top_r-1].needle < bottom[state.l].needle) {
pinned = true;
}
// /--- r
// o ... l
if (top_r == 0 && state.l > 0) {
pinned = true;
}
if (pinned) {
max = std::numeric_limits< int32_t >::min();
min = std::numeric_limits< int32_t >::max();
}
}
}
min = std::max(min, constraints.min_free);
max = std::min(max, constraints.max_free);
for (int32_t needle = min; needle <= max; ++needle) {
apply_action(Action(Action::MoveRight, needle), state, cost);
}
}
};
//Initial states:
for (int32_t i = 0; uint32_t(i) < bottom.size(); ++i) {
State init;
init.l = i;
init.l_next_needle = 0;
init.r = i;
init.r_prev_needle = 0;
Cost cost;
cost.penalty = 0;
queue_state(init, cost, nullptr, Action(Action::None, 0));
}
//TODO: consider states that start on *top* needles (seems like a rare and unneeded case)
//Actual search:
const State *best = nullptr;
while (!todo.empty()) {
Cost cost = todo.begin()->first;
const State *state = todo.begin()->second;
todo.erase(todo.begin());
{ //see if this is the first time the state has been expanded:
auto f = best_source.find(*state);
assert(f != best_source.end());
assert(&(f->first) == state);
if (f->second.cost < cost) continue;
assert(f->second.cost == cost);
}
//std::cout << "Considering " << state->to_string() << " [penalty: " << cost.penalty << "]" << std::endl; //DEBUG
//if this is an ending state, end:
if (state->l < 0 && state->r >= int32_t(bottom.size()) && state->r - state->l > int32_t(top.size() + bottom.size())) {
best = state;
break;
}
//otherwise, expand:
expand_state(*state, cost);
}
assert(best && "Must have gotten to some ending state.");
//read back operations from best:
std::vector< Transfer > ops;
bool is_first = true;
while (best) {
auto f = best_source.find(*best);
assert(f != best_source.end());
if (f->second.source == nullptr) break;
State const &state = *f->second.source;
Action const &action = f->second.action;
int32_t top_l = -(state.l + 1);
int32_t top_r = int32_t(top.size()) - 1 - (state.r - int32_t(bottom.size()));
assert(state.l <= state.r);
assert(top_l <= top_r);
if (action.type == Action::MoveLeft) {
if (state.l >= 0) {
ops.emplace_back(BedNeedle(bottom_bed, bottom[state.l].needle), BedNeedle(to_bottom_bed, action.needle));
} else { assert(state.l < 0);
assert(top_l >= 0 && uint32_t(top_l) < top.size());
ops.emplace_back(BedNeedle(top_bed, top[top_l].needle), BedNeedle(to_bottom_bed, action.needle));
}
} else if (action.type == Action::MoveRight) {
if (state.r < int32_t(bottom.size())) {
ops.emplace_back(BedNeedle(bottom_bed, bottom[state.r].needle), BedNeedle(to_bottom_bed, action.needle));
} else { assert(state.r >= int32_t(bottom.size()));
assert(top_r >= 0 && uint32_t(top_r) < top.size());
ops.emplace_back(BedNeedle(top_bed, top[top_r].needle), BedNeedle(to_bottom_bed, action.needle));
}
} else if (action.type == Action::Finish) {
assert(is_first);
} else {
assert(0 && "Invalid action type.");
}
if (action.type != Action::Finish) {
assert(!ops.empty() && ops.back().why == "");
ops.back().why = state.to_string() + "; " + action.to_string();
}
best = f->second.source;
is_first = false;
}
std::cout.flush(); //DEBUG
std::reverse(ops.begin(), ops.end());
/*
std::cout << " Final plan:\n"; //DEBUG
for (auto const &op : ops) {
std::cout << " " << op.to_string() << '\n';
}
std::cout.flush(); //DEBUG
*/
/*
std::cout << "Before Expand:\n"; //DEBUG
draw_beds(top_bed, top, bottom_bed, bottom); //DEBUG
*/
run_transfers(constraints,
top_bed, top,
bottom_bed, bottom,
ops,
to_top_bed, &to_top,
to_bottom_bed, &to_bottom);
/*
std::cout << "After Expand:\n"; //DEBUG
draw_beds(to_top_bed, to_top, to_bottom_bed, to_bottom); //DEBUG
*/
plan.insert(plan.end(), ops.begin(), ops.end());
}