forked from ddkang/img_classification_pk_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathargs.py
122 lines (113 loc) · 6.84 KB
/
args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import glob
import time
import argparse
import config
model_names = list(map(lambda n: os.path.basename(n)[:-3],
glob.glob('models/[A-Za-z]*.py')))
arg_parser = argparse.ArgumentParser(
description='Image classification PK main script')
exp_group = arg_parser.add_argument_group('exp', 'experiment setting')
exp_group.add_argument('--save', default='save/default-{}'.format(time.time()),
type=str, metavar='SAVE',
help='path to the experiment logging directory'
'(default: save/debug)')
exp_group.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
exp_group.add_argument('--eval', '--evaluate', dest='evaluate', default='',
choices=['', 'train', 'val', 'test'],
help='eval mode: evaluate model on train/val/test set'
' (default: \'\' i.e. training mode)')
exp_group.add_argument('-f', '--force', dest='force', action='store_true',
help='force to overwrite existing save path')
exp_group.add_argument('--print-freq', '-p', default=100, type=int,
metavar='N', help='print frequency (default: 100)')
exp_group.add_argument('--no_tensorboard', dest='tensorboard',
action='store_false',
help='do not use tensorboard_logger for logging')
# dataset related
data_group = arg_parser.add_argument_group('data', 'dataset setting')
data_group.add_argument('--data', metavar='D', default='cifar10',
choices=config.datasets.keys(),
help='datasets: ' +
' | '.join(config.datasets.keys()) +
' (default: cifar10)')
data_group.add_argument('--no_valid', action='store_false', dest='use_validset',
help='not hold out 10 percent of training data as validation')
data_group.add_argument('--data_root', metavar='DIR', default='data',
help='path to dataset (default: data)')
data_group.add_argument('-j', '--workers', dest='num_workers', default=4,
type=int, metavar='N',
help='number of data loading workers (default: 4)')
data_group.add_argument('--normalized', action='store_true',
help='normalize the data into zero mean and unit std')
# model arch related
arch_group = arg_parser.add_argument_group('arch',
'model architecture setting')
arch_group.add_argument('--arch', '-a', metavar='ARCH', default='resnet',
type=str, choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet)')
arch_group.add_argument('-d', '--depth', default=56, type=int, metavar='D',
help='depth (default=56)')
arch_group.add_argument('--drop-rate', default=0.0, type=float,
metavar='DROPRATE', help='dropout rate (default: 0.2)')
arch_group.add_argument('--death-mode', default='none',
choices=['none', 'linear', 'uniform'],
help='death mode (default: none)')
arch_group.add_argument('--death-rate', default=0.5, type=float,
help='death rate rate (default: 0.5)')
arch_group.add_argument('--test-death-mode', default='none',
choices=['none', 'stoch', 'stoch_random'],
help='death mode when testing(default: none)')
arch_group.add_argument('--retrain', default=False, type=bool,
help='fine-tuning after dropping some blocks')
arch_group.add_argument('--growth-rate', default=12, type=int,
metavar='GR', help='Growth rate of DenseNet'
' (1 means dot\'t use compression) (default: 0.5)')
arch_group.add_argument('--bn-size', default=4, type=int,
metavar='B', help='bottle neck ratio of DenseNet'
' (0 means dot\'t use bottle necks) (default: 4)')
arch_group.add_argument('--compression', default=0.5, type=float,
metavar='C', help='compression ratio of DenseNet'
' (1 means dot\'t use compression) (default: 0.5)')
# used to set the argument when to resume automatically
arch_resume_names = ['arch', 'depth', 'death_mode', 'death_rate', 'death_rate',
'growth_rate', 'bn_size', 'compression']
# training related
optim_group = arg_parser.add_argument_group('optimization',
'optimization setting')
optim_group.add_argument('--trainer', default='train', type=str,
help='trainer file name without ".py"'
' (default: train)')
optim_group.add_argument('--epochs', default=164, type=int, metavar='N',
help='number of total epochs to run (default: 164)')
optim_group.add_argument('--start-epoch', default=1, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
optim_group.add_argument('--patience', default=0, type=int, metavar='N',
help='patience for early stopping'
'(0 means no early stopping)')
optim_group.add_argument('-b', '--batch-size', default=64, type=int,
metavar='N', help='mini-batch size (default: 64)')
optim_group.add_argument('--optimizer', default='sgd',
choices=['sgd', 'rmsprop', 'adam'], metavar='N',
help='optimizer (default=sgd)')
optim_group.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR',
help='initial learning rate (default: 0.1)')
optim_group.add_argument('--decay_rate', default=0.1, type=float, metavar='N',
help='decay rate of learning rate (default: 0.1)')
optim_group.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum (default=0.9)')
optim_group.add_argument('--no_nesterov', dest='nesterov',
action='store_false',
help='do not use Nesterov momentum')
optim_group.add_argument('--alpha', default=0.99, type=float, metavar='M',
help='alpha for ')
optim_group.add_argument('--beta1', default=0.9, type=float, metavar='M',
help='beta1 for Adam (default: 0.9)')
optim_group.add_argument('--beta2', default=0.999, type=float, metavar='M',
help='beta2 for Adam (default: 0.999)')
optim_group.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')