-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathaugmentation.py
123 lines (97 loc) · 4.21 KB
/
augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import string
import torch
from torch import Tensor
from sparse_img_wrap import sparse_image_warp
import random
class ConcatFeature(torch.nn.Module):
def __init__(self,merge_size=3):
super(ConcatFeature, self).__init__()
self.merge_size = merge_size
def forward(self, waveform:Tensor) -> Tensor:
feat, waveform_len = waveform.shape
waveform = waveform.T
if waveform_len % self.merge_size != 0:
pad_wave = torch.zeros((self.merge_size - (waveform_len % self.merge_size), feat))
waveform = torch.cat([waveform, pad_wave], dim=0)
return waveform.reshape(-1, feat*self.merge_size).T
class TimeWrap(torch.nn.Module):
def __init__(self, W=5):
super(TimeWrap, self).__init__()
self.W = W
def forward(self, waveform:Tensor) -> Tensor:
waveform = waveform.T
feat, waveform_len = waveform.shape
device = waveform.device
waveform = waveform.unsqueeze(0)
y = feat//2
horizontal_line_at_ctr = waveform[0][y]
assert len(horizontal_line_at_ctr) == waveform_len
point_to_warp = horizontal_line_at_ctr[random.randrange(self.W, waveform_len - self.W)]
assert isinstance(point_to_warp, torch.Tensor)
# Uniform distribution from (0,W) with chance to be up to W negative
dist_to_warp = random.randrange(-self.W, self.W)
src_pts, dest_pts = (torch.tensor([[[y, point_to_warp]]], device=device),
torch.tensor([[[y, point_to_warp + dist_to_warp]]], device=device))
warped_waveform, dense_flows = sparse_image_warp(waveform, src_pts, dest_pts)
warped_waveform = warped_waveform.squeeze(3).T.squeeze(-1)
return warped_waveform
class TimeMask(torch.nn.Module):
def __init__(self, T=40, num_masks=1, replace_with_zero=False):
super(TimeMask, self).__init__()
'''
uniform distribution from 0 to the time mask parameter T
'''
self.T = T
self.num_masks = num_masks
self.replace_with_zero = replace_with_zero
def forward(self, waveform):
cloned = waveform.clone()
len_spectro = cloned.shape[1]
for i in range(0, self.num_masks):
t = random.randrange(0, self.T)
t_zero = random.randrange(0, len_spectro - t)
# avoids randrange error if values are equal and range is empty
if (t_zero == t_zero + t): return cloned
mask_end = random.randrange(t_zero, t_zero + t)
if (self.replace_with_zero): cloned[:,t_zero:mask_end] = 0
else: cloned[:,t_zero:mask_end] = cloned.mean()
return cloned
class FreqMask(torch.nn.Module):
def __init__(self, F=40, num_masks=1, replace_with_zero=False):
super(FreqMask, self).__init__()
'''
F : frequency mask parameter F,
'''
self.F = F
self.num_masks = num_masks
self.replace_with_zero = replace_with_zero
def forward(self, waveform):
cloned = waveform.clone()
num_mel_channels = cloned.shape[0]
for i in range(0, self.num_masks):
f = random.randrange(0, self.F)
f_zero = random.randrange(0, num_mel_channels - f)
# avoids randrange error if values are equal and range is empty
if (f_zero == f_zero + f): return cloned
mask_end = random.randrange(f_zero, f_zero + f)
if (self.replace_with_zero): cloned[f_zero:mask_end, :] = 0
else: cloned[f_zero:mask_end, :] = cloned.mean()
return cloned
if __name__ == "__main__":
import torchaudio
transforms_piplines = [
torchaudio.transforms.MelSpectrogram(
# n_mfcc=args.audio_feat,
n_fft=512, n_mels=40,
# melkwargs={'n_fft':1024, 'win_length': 1024}
),
TimeWrap(W=5),
TimeMask(T=100),
FreqMask(F=40),
ConcatFeature()
]
transforms = torch.nn.Sequential(*transforms_piplines)
data, sr = torchaudio.load_wav('../common_voice/clips/common_voice_en_19664034.wav')
print(data[0].shape)
data = transforms(data[0])
print(data.shape)