-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlalr.sc
548 lines (483 loc) · 16.8 KB
/
lalr.sc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
;;; lalr.ss - An LALR(1) parser generator
;;;
;;; Author: Mark Johnson ([email protected])
;;; Date: 24th May, 1993
;;; Version: 0.9
;;;
;;;
;;; The parser generator consists of two functions. The first constructs
;;; the parse tables, which the second function uses to actually parse.
;;; You can see how to use these in the file lalr-test.ss.
;;;
;;; (lalr-table grammar terminals print-table-flag) returns
;;; the lalr parsing table for the grammar. Its arguments are:
;;;
;;; grammar: A list of productions, each of which is a list of the
;;; form (<cat> --> <cat> ... <action>), where <cat> is a symbol
;;; (a category label) and <action> is a procedure of appropriate
;;; arity. The procedure will be called each time this production
;;; is reduced with the values associated with each child node.
;;; The categories can be any symbol _except_ $start$ and $end$.
;;; The grammar's start symbol is the parent category of the first
;;; production, i.e., (caar grammar).
;;;
;;; terminals: A list of all the categories that the lexical analyser
;;; can return.
;;;
;;; print-table-flag: If non-#f, causes the pretty-printing of the
;;; lalr parse tables as a side-effect. Parse conflicts are indicated
;;; in the table (search for ** ).
;;;
;;; (lalr-parser table lexical-analyser parse-error) returns the value
;;; associated with the root node if the parse is successful, or the
;;; value of parse-error otherwise.
;;;
;;; table: A parse table produced by lalr-table.
;;;
;;; lexical-analyser: A procedure of no arguments which advances the
;;; input stream by one element each time it is called, returning
;;; (cons <cat> <val>) where <cat> is the category label of the
;;; next token, and <val> is the value associated with that token.
;;; It should return #f at the end of the input stream.
;;;
;;; parse-error: A procedure of no arguments, which is called if the
;;; the parser blocks (i.e., detects a syntactic error in the input
;;; stream).
;;;
;;;
;;; The parser resolves any parse conflicts in a standard way;
;;; shift/reduce conflicts are resolved by shifting, and reduce/reduce
;;; conflicts are resolved by choosing the longest applicable
;;; reduction.
;;;
;;; Note: It is most convenient to use the backquote mechanism to
;;; enter the grammar into scheme. The actions, which are procedures,
;;; can be created by unquoting a corresponding lambda expression
;;; (see the associated example file). You can use lalr-table to
;;; produce expressions that can appear in Scheme programs by changing
;;; the backquote infront of the grammar to a normal quote.
;;; (require 'sort)
;;; (require 'assoc)
(define (lalr-table grammar terminals print-flag)
(define new-start-symbol '$start$)
(define end-marker '$end$)
;;;;;;; Utilities
(define (list-prefix elts n)
(if (zero? n)
'()
(cons (car elts) (list-prefix (cdr elts) (- n 1)))))
(define (list-suffix elts n)
(if (zero? n)
elts
(list-suffix (cdr elts) (- n 1))))
(define (sublist elts start . end)
(if (null? end)
(list-suffix elts start)
(list-prefix (list-suffix elts start) (- (car end) start))))
(define (butlast elts)
(cond ((null? elts) '())
((null? (cdr elts)) '())
(else (cons (car elts) (butlast (cdr elts))))))
(define (last elts)
(cond ((null? elts) #f)
((null? (cdr elts)) (car elts))
(else (last (cdr elts)))))
(define (select p? es)
(cond ((null? es) '())
((p? (car es)) (cons (car es) (select p? (cdr es))))
(else (select p? (cdr es)))))
(define (find-if p? es)
(cond ((null? es) #f)
((p? (car es)) (car es))
(else (find-if p? (cdr es)))))
(define (some p? es)
(if (null? es)
#f
(or (p? (car es))
(some p? (cdr es)))))
(define (every p? es)
(if (null? es)
#t
(and (p? (car es))
(every p? (cdr es)))))
(define (reduce f es init)
(if (null? es)
init
(reduce f (cdr es) (f (car es) init))))
(define (union e1s e2s)
(if (null? e1s)
e2s
(if (member (car e1s) e2s)
(union (cdr e1s) e2s)
(cons (car e1s) (union (cdr e1s) e2s)))))
(define (intersection e1s e2s)
(if (null? e1s)
'()
(if (member (car e1s) e2s)
(cons (car e1s) (intersection (cdr e1s) e2s))
(intersection (cdr e1s) e2s))))
(define (subtract e1s e2s)
(if (null? e1s)
'()
(if (member (car e1s) e2s)
(subtract (cdr e1s) e2s)
(cons (car e1s) (subtract (cdr e1s) e2s)))))
(define (unions sets)
(cond ((null? sets) '())
((null? (cdr sets)) (car sets))
(else (union (car sets) (unions (cdr sets))))))
(define (close op es)
(define (close1 todo sofar)
(if (pair? todo)
(close1 (cdr todo)
(if (member (car todo) sofar)
sofar
(close1 (op (car todo)) (cons (car todo) sofar))))
sofar))
(close1 es '()))
(define (collect f es)
(define (collect1 todo sofar)
(if (null? todo)
sofar
(let ((val (f (car todo))))
(collect1 (cdr todo) (if val (adjoin val sofar) sofar)))))
(collect1 es '()))
(define (adjoin e es)
(if (member e es)
es
(cons e es)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Globals
;;;
(define cat@ atom@)
(define memoize1
(lambda (assoc-maker fn)
(let* ((store ((assoc-maker 'make)))
(ref (assoc-maker 'ref))
(setter! (assoc-maker 'set!)))
(lambda (arg)
(or (ref store arg)
(let ((val (fn arg)))
(setter! store arg val)
val))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; Rules and Grammars
;;;
(define (make-rule index-number mother daughters action)
(vector index-number mother daughters action))
(define (rule-no rule) (vector-ref rule 0))
(define (rule-mother rule) (vector-ref rule 1))
(define (rule-daughters rule) (vector-ref rule 2))
(define (rule-action rule) (vector-ref rule 3))
(define (transform-rule grammar-rule rule-no)
(let ((l (length grammar-rule)))
(make-rule rule-no (car grammar-rule)
(butlast (cddr grammar-rule))
(last grammar-rule))))
(let* ((grules (let ((i -1))
(map (lambda (r)
(set! i (1+ i))
(transform-rule r i))
grammar)))
(nrules (length grules))
(nonterminals (collect rule-mother grules))
(start-symbol (caar grammar))
(expand
(memoize1 cat@
(lambda (cat)
(select (lambda (rule) (eq? (rule-mother rule) cat))
grules))))
(gcats (union terminals (collect rule-mother grules)))
(derives-epsilon?
(memoize1 cat@
(lambda (c)
(define (try dejaVu cat)
(and (not (member cat dejaVu))
(some (lambda (r)
(every (lambda (c1) (try (cons cat dejaVu) c1))
(rule-daughters r)))
(expand cat))))
(try '() c))))
(left-corners (lambda (c)
(reduce (lambda (rule sofar)
(define (skip rhs sofar)
(if (null? rhs)
sofar
(if (derives-epsilon? (car rhs))
(skip (cdr rhs) (adjoin (car rhs) sofar))
(adjoin (car rhs) sofar))))
(skip (rule-daughters rule) sofar))
(expand c)
'())))
(left-most-terminals
(memoize1 cat@
(lambda (c0)
(select (lambda (term)
(or (eq? end-marker term) (member term terminals)))
(close left-corners (list c0)))))))
(define (left-most catList)
(if (pair? catList)
(if (derives-epsilon? (car catList))
(union (left-most-terminals (car catList))
(left-most (cdr catList)))
(left-most-terminals (car catList)))
'()))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;;
;;; LR(0) parsing table constructor
;;;
(define (make-item rule pos) (vector pos rule '()))
(define (item-rule item) (vector-ref item 1))
(define (item-pos item) (vector-ref item 0))
(define (item-las item) (vector-ref item 2))
(define (item-las-push! item la)
(vector-set! item 2 (cons la (vector-ref item 2))))
(define (item-daughters item) (rule-daughters (item-rule item)))
(define (item-right item) (list-suffix (item-daughters item) (item-pos item)))
(define (item-next item)
(let ((rhs (item-right item)))
(if (pair? rhs) (car rhs) #f)))
;;;(define (item<? item1 item2)
;;; (let ((rn1 (rule-no (item-rule item1)))
;;; (rn2 (rule-no (item-rule item2))))
;;; (cond ((< rn1 rn2) #t)
;;; ((> rn1 rn2) #f)
;;; (else (< (item-pos item1) (item-pos item2))))))
(define (item<? item1 item2)
(let ((ip1 (item-pos item1))
(ip2 (item-pos item2)))
(cond ((> ip1 ip2) #t)
((< ip1 ip2) #f)
(else (< (rule-no (item-rule item1))
(rule-no (item-rule item2)))))))
;;; deleted because states must *not* share items!
;;;(define cat->items
;;; (memoize1 cat@
;;; (lambda (cat)
;;; (map (lambda (rule) (make-item rule 0))
;;; (expand cat)))))
(define (cat->items cat)
(map (lambda (rule) (make-item rule 0))
(expand cat)))
(define (close-items items)
(close (lambda (item)
(let ((rh-cat (item-next item)))
(if rh-cat
(cat->items rh-cat)
'())))
items))
(define (shift-items items cat)
(collect (lambda (item)
(if (eq? cat (item-next item))
(make-item (item-rule item) (1+ (item-pos item)))
#f))
items))
;;; returns the set of categories appearing to the right of the dot
(define (items-next items)
(collect item-next items))
;;; The actual table construction functions
(define (make-state no items) (vector no items #f))
(define (state-no state) (vector-ref state 0))
(define (state-items state) (vector-ref state 1))
(define (state-shifts state) (vector-ref state 2))
(define (state-shifts-set! state shifts) (vector-set! state 2 shifts))
(define (sort-items! items) (sort! item<? items))
(let* ((state@ (trie-maker (avl-maker item<?)))
(initial-item (make-item (make-rule -1 new-start-symbol
(list start-symbol) #f) 0))
(state-vec
(let ((assc ((state@ 'make)))
(ref (state@ 'ref))
(setter! (state@ 'set!))
(nstates 0))
(define (follow items)
(let* ((sitems (sort-items! items))
(existing-state (ref assc sitems)))
(if existing-state
(state-no existing-state)
(begin
(let* ((closure (sort-items! (close-items sitems)))
(state (make-state nstates closure)))
(set! nstates (1+ nstates))
(setter! assc sitems state)
(state-shifts-set!
state
(map (lambda (cat)
(cons cat
(follow (shift-items closure cat))))
(collect item-next closure)))
(state-no state))))))
(follow (list initial-item))
(let ((state-vec (make-vector nstates)))
((state@ 'for-each) assc
(lambda (items state)
(vector-set! state-vec (state-no state)
state)))
state-vec))))
(define (propagate-la state-no rule pos la)
(let* ((state (vector-ref state-vec state-no))
(state-item (find-if (lambda (item)
(and (= (rule-no rule)
(rule-no (item-rule item)))
(= pos (item-pos item))))
(state-items state))))
(cond ((not (member la (item-las state-item)))
(item-las-push! state-item la)
(let ((rhs (list-suffix (rule-daughters rule) pos)))
(if (pair? rhs)
(let ((new-las (left-most (append (cdr rhs) (list la)))))
(for-each (lambda (new-rule)
(for-each (lambda (new-la)
(propagate-la state-no
new-rule 0
new-la))
new-las))
(expand (car rhs)))
(propagate-la (cdr (assq (car rhs) (state-shifts state)))
rule (1+ pos) la))))))))
(define (print-table)
(define (space-display p) (display " ") (display p))
(do ((state-no 0 (1+ state-no)))
((= state-no (vector-length state-vec)))
(newline) (display "State ") (display state-no) (newline)
(let* ((state (vector-ref state-vec state-no))
(deja-vu (map car (state-shifts state)))
(conflicts '()))
(for-each (lambda (item)
(newline)
(display " ")
(display (rule-mother (item-rule item)))
(display " -->")
(for-each space-display
(sublist (rule-daughters (item-rule item))
0 (item-pos item)))
(space-display ".")
(for-each space-display (item-right item))
(space-display ";")
(for-each space-display (item-las item)))
(state-items state))
(newline)
(for-each (lambda (shift)
(newline)
(display " On ")
(display (car shift))
(display " shift to state ")
(display (cdr shift)))
(state-shifts state))
(for-each (lambda (item)
(newline)
(display " On")
(for-each space-display (item-las item))
(display " reduce: ")
(display (rule-mother (item-rule item)))
(display " -->")
(for-each space-display (rule-daughters (item-rule item)))
(let ((cs (intersection (item-las item) deja-vu)))
(if (not (null? cs))
(set! conflicts (union cs conflicts)))))
(select (lambda (item) (null? (item-right item)))
(state-items state)))
(if (not (null? conflicts))
(begin
(newline)
(display " ** Conflicting actions on")
(for-each space-display conflicts)))
(newline))))
(propagate-la 0 (item-rule initial-item) 0 end-marker)
(if print-flag
(print-table))
(let ((shift-vec (make-vector (vector-length state-vec)))
(goto-vec (make-vector (vector-length state-vec)))
(redn-vec (make-vector (vector-length state-vec)))
(rule-parent-vec (make-vector nrules))
(rule-length-vec (make-vector nrules))
(rule-action-vec (make-vector nrules)))
(do ((i 0 (+ i 1)))
((= i (vector-length state-vec)))
(let* ((state (vector-ref state-vec i))
(so-far (map car (state-shifts state))))
(vector-set! shift-vec i
(select (lambda (shift)
(member (car shift) terminals))
(state-shifts state)))
(vector-set! goto-vec i
(select (lambda (shift)
(member (car shift) nonterminals))
(state-shifts state)))
(vector-set! redn-vec i
(map (lambda (item)
(let ((new-las (subtract (item-las item) so-far)))
(set! so-far (append new-las so-far))
(cons (rule-no (item-rule item)) new-las)))
(select (lambda (item) (null? (item-right item)))
(state-items state))))))
(for-each (lambda (rule)
(let ((no (rule-no rule)))
(vector-set! rule-parent-vec no (rule-mother rule))
(vector-set! rule-length-vec no
(length (rule-daughters rule)))
(vector-set! rule-action-vec no (rule-action rule))))
grules)
(vector shift-vec
goto-vec
redn-vec
rule-parent-vec
rule-length-vec
rule-action-vec)
))))
(define (lalr-parser lalr-tables lexical-analyser parse-error)
(define end-marker '$end$)
(define (find-redn la redns)
(if (null? redns)
#f
(if (memq la (cdar redns))
(caar redns)
(find-redn la (cdr redns)))))
(define (list-prefix elts n)
(if (zero? n) '() (cons (car elts) (list-prefix (cdr elts) (- n 1)))))
(define (list-suffix elts n)
(if (zero? n) elts (list-suffix (cdr elts) (- n 1))))
(let ((shift-vec (vector-ref lalr-tables 0))
(goto-vec (vector-ref lalr-tables 1))
(redn-vec (vector-ref lalr-tables 2))
(rule-parent (vector-ref lalr-tables 3))
(rule-length (vector-ref lalr-tables 4))
(rule-action (vector-ref lalr-tables 5))
(next-cat #f)
(next-val #f))
(define (advance-input)
(let ((p (lexical-analyser)))
(if (pair? p)
(begin
(set! next-cat (car p))
(set! next-val (cdr p)))
(begin
(set! next-cat end-marker)
(set! next-val #f)))))
(define (move* state states vals)
(let* ((shift-pair (assq next-cat (vector-ref shift-vec state))))
(if shift-pair
(let ((old-val next-val))
(advance-input)
(move* (cdr shift-pair)
(cons state states)
(cons old-val vals)))
(let ((redn (find-redn next-cat (vector-ref redn-vec state))))
(if redn
(if (and (= redn -1) (eq? next-cat end-marker))
(car vals)
(let* ((l (vector-ref rule-length redn))
(new-states (if (zero? l)
(cons state states)
(list-suffix states (- l 1)))))
(move* (cdr (assq (vector-ref rule-parent redn)
(vector-ref goto-vec (car new-states))))
new-states
(cons (apply (vector-ref rule-action redn)
(reverse (list-prefix vals l)))
(list-suffix vals l)))))
(parse-error))))))
(advance-input)
(move* 0 '() '())))