forked from lucvoo/sparse
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathflow.c
1042 lines (920 loc) · 23.3 KB
/
flow.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (C) 2004 Linus Torvalds
*/
///
// Flow simplification
// -------------------
#include <string.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <stddef.h>
#include <assert.h>
#include "parse.h"
#include "expression.h"
#include "linearize.h"
#include "simplify.h"
#include "flow.h"
#include "target.h"
unsigned long bb_generation;
///
// remove phi-sources from a removed edge
//
// :note: It's possible to have several edges between the same BBs.
// It's common with switches but it's also possible with branches.
// This function will only remove a single phi-source per edge.
int remove_phisources(struct basic_block *par, struct basic_block *old)
{
struct instruction *insn;
int changed = 0;
FOR_EACH_PTR(old->insns, insn) {
pseudo_t phi;
if (!insn->bb)
continue;
if (insn->opcode != OP_PHI)
return changed;
// found a phi-node in the target BB,
// now look after its phi-sources.
FOR_EACH_PTR(insn->phi_list, phi) {
struct instruction *phisrc = phi->def;
if (phi == VOID)
continue;
assert(phisrc->phi_node == insn);
if (phisrc->bb != par)
continue;
// found a phi-source corresponding to this edge:
// remove it but avoid the recursive killing.
REPLACE_CURRENT_PTR(phi, VOID);
remove_use(&phisrc->src);
phisrc->bb = NULL;
changed |= REPEAT_CSE;
// Only the first one must be removed.
goto next;
} END_FOR_EACH_PTR(phi);
next: ;
} END_FOR_EACH_PTR(insn);
return changed;
}
///
// remove all phisources but the one corresponding to the given target
static int remove_other_phisources(struct basic_block *bb, struct multijmp_list *list, struct basic_block *target)
{
struct multijmp *jmp;
int changed = 0;
FOR_EACH_PTR(list, jmp) {
if (jmp->target == target) {
target = NULL;
continue;
}
changed |= remove_phisources(bb, jmp->target);
} END_FOR_EACH_PTR(jmp);
return changed;
}
/*
* Dammit, if we have a phi-node followed by a conditional
* branch on that phi-node, we should damn well be able to
* do something about the source. Maybe.
*/
static int rewrite_branch(struct basic_block *bb,
struct basic_block **ptr,
struct basic_block *old,
struct basic_block *new)
{
if (*ptr != old || new == old || !bb->ep)
return 0;
/* We might find new if-conversions or non-dominating CSEs */
/* we may also create new dead cycles */
repeat_phase |= REPEAT_CSE | REPEAT_CFG_CLEANUP;
*ptr = new;
replace_bb_in_list(&bb->children, old, new, 1);
remove_bb_from_list(&old->parents, bb, 1);
add_bb(&new->parents, bb);
return 1;
}
/*
* Return the known truth value of a pseudo, or -1 if
* it's not known.
*/
static int pseudo_truth_value(pseudo_t pseudo)
{
switch (pseudo->type) {
case PSEUDO_VAL:
return !!pseudo->value;
case PSEUDO_REG: {
struct instruction *insn = pseudo->def;
/* A symbol address is always considered true.. */
if (insn->opcode == OP_SYMADDR && insn->target == pseudo)
return 1;
}
/* Fall through */
default:
return -1;
}
}
/*
* Does a basic block depend on the pseudos that "src" defines?
*/
static int bb_depends_on(struct basic_block *target, struct basic_block *src)
{
pseudo_t pseudo;
FOR_EACH_PTR(src->defines, pseudo) {
if (pseudo_in_list(target->needs, pseudo))
return 1;
} END_FOR_EACH_PTR(pseudo);
return 0;
}
/*
* This really should be handled by bb_depends_on()
* which efficiently check the dependence using the
* defines - needs liveness info. Problem is that
* there is no liveness done on OP_PHI & OP_PHISRC.
*
* This function add the missing dependency checks.
*/
static int bb_depends_on_phi(struct basic_block *target, struct basic_block *src)
{
struct instruction *insn;
FOR_EACH_PTR(src->insns, insn) {
if (!insn->bb)
continue;
if (insn->opcode != OP_PHI)
continue;
if (pseudo_in_list(target->needs, insn->target))
return 1;
} END_FOR_EACH_PTR(insn);
return 0;
}
///
// does the BB contains ignorable instructions but a final branch?
// :note: something could be done for phi-sources but ... we'll see.
static bool bb_is_forwarder(struct basic_block *bb)
{
struct instruction *insn;
FOR_EACH_PTR(bb->insns, insn) {
if (!insn->bb)
continue;
switch (insn->opcode) {
case OP_NOP:
case OP_INLINED_CALL:
continue;
case OP_CBR:
case OP_BR:
return true;
default:
goto out;
}
} END_FOR_EACH_PTR(insn);
out:
return false;
}
///
// check if the sources of a phi-node match with the parent BBs
static bool phi_check(struct instruction *node)
{
struct basic_block *bb;
pseudo_t phi;
PREPARE_PTR_LIST(node->bb->parents, bb);
FOR_EACH_PTR(node->phi_list, phi) {
if (phi == VOID || !phi->def)
continue;
if (phi->def->bb != bb)
return false;
NEXT_PTR_LIST(bb);
} END_FOR_EACH_PTR(phi);
if (bb)
return false;
FINISH_PTR_LIST(bb);
return true;
}
/*
* When we reach here, we have:
* - a basic block that ends in a conditional branch and
* that has no side effects apart from the pseudos it
* may change.
* - the phi-node that the conditional branch depends on
* - full pseudo liveness information
*
* We need to check if any of the _sources_ of the phi-node
* may be constant, and not actually need this block at all.
*/
static int try_to_simplify_bb(struct basic_block *bb, struct instruction *first, struct instruction *second)
{
int changed = 0;
pseudo_t phi;
int bogus;
/*
* This a due to improper dominance tracking during
* simplify_symbol_usage()/conversion to SSA form.
* No sane simplification can be done when we have this.
*/
bogus = !phi_check(first);
FOR_EACH_PTR(first->phi_list, phi) {
struct instruction *def = phi->def;
struct basic_block *source, *target;
pseudo_t pseudo;
struct instruction *br;
int cond;
if (!def)
continue;
source = def->bb;
pseudo = def->src1;
if (!pseudo || !source)
continue;
br = last_instruction(source->insns);
if (!br)
continue;
if (br->opcode != OP_CBR && br->opcode != OP_BR)
continue;
cond = pseudo_truth_value(pseudo);
if (cond < 0)
continue;
target = cond ? second->bb_true : second->bb_false;
if (bb_depends_on(target, bb))
continue;
if (bb_depends_on_phi(target, bb))
continue;
changed |= rewrite_branch(source, &br->bb_true, bb, target);
changed |= rewrite_branch(source, &br->bb_false, bb, target);
if (changed && !bogus)
kill_use(THIS_ADDRESS(phi));
} END_FOR_EACH_PTR(phi);
return changed;
}
static int bb_has_side_effects(struct basic_block *bb)
{
struct instruction *insn;
FOR_EACH_PTR(bb->insns, insn) {
if (!insn->bb)
continue;
switch (insn->opcode) {
case OP_CALL:
/* FIXME! This should take "const" etc into account */
return 1;
case OP_LOAD:
if (!insn->type)
return 1;
if (insn->is_volatile)
return 1;
continue;
case OP_STORE:
case OP_CONTEXT:
return 1;
case OP_ASM:
/* FIXME! This should take "volatile" etc into account */
return 1;
default:
continue;
}
} END_FOR_EACH_PTR(insn);
return 0;
}
static int simplify_phi_branch(struct basic_block *bb, struct instruction *br)
{
pseudo_t cond = br->cond;
struct instruction *def;
if (cond->type != PSEUDO_REG)
return 0;
def = cond->def;
if (def->bb != bb || def->opcode != OP_PHI)
return 0;
if (bb_has_side_effects(bb))
return 0;
return try_to_simplify_bb(bb, def, br);
}
static int simplify_branch_branch(struct basic_block *bb, struct instruction *br,
struct basic_block **target_p, int bb_true)
{
struct basic_block *target = *target_p, *final;
struct instruction *insn;
int retval;
if (target == bb)
return 0;
insn = last_instruction(target->insns);
if (!insn || insn->opcode != OP_CBR || insn->cond != br->cond)
return 0;
/*
* Ahhah! We've found a branch to a branch on the same conditional!
* Now we just need to see if we can rewrite the branch..
*/
retval = 0;
final = bb_true ? insn->bb_true : insn->bb_false;
if (bb_has_side_effects(target))
goto try_to_rewrite_target;
if (bb_depends_on(final, target))
goto try_to_rewrite_target;
if (bb_depends_on_phi(final, target))
return 0;
return rewrite_branch(bb, target_p, target, final);
try_to_rewrite_target:
/*
* If we're the only parent, at least we can rewrite the
* now-known second branch.
*/
if (bb_list_size(target->parents) != 1)
return retval;
convert_to_jump(insn, final);
return 1;
}
static int simplify_one_branch(struct basic_block *bb, struct instruction *br)
{
if (simplify_phi_branch(bb, br))
return 1;
return simplify_branch_branch(bb, br, &br->bb_true, 1) |
simplify_branch_branch(bb, br, &br->bb_false, 0);
}
static int simplify_branch_nodes(struct entrypoint *ep)
{
int changed = 0;
struct basic_block *bb;
FOR_EACH_PTR(ep->bbs, bb) {
struct instruction *br = last_instruction(bb->insns);
if (!br || br->opcode != OP_CBR)
continue;
changed |= simplify_one_branch(bb, br);
} END_FOR_EACH_PTR(bb);
return changed;
}
/*
* This is called late - when we have intra-bb liveness information..
*/
int simplify_flow(struct entrypoint *ep)
{
return simplify_branch_nodes(ep);
}
static inline void concat_user_list(struct pseudo_user_list *src, struct pseudo_user_list **dst)
{
copy_ptr_list((struct ptr_list **)dst, (struct ptr_list *)src);
}
void convert_instruction_target(struct instruction *insn, pseudo_t src)
{
pseudo_t target;
struct pseudo_user *pu;
/*
* Go through the "insn->users" list and replace them all..
*/
target = insn->target;
if (target == src)
return;
FOR_EACH_PTR(target->users, pu) {
if (*pu->userp != VOID) {
assert(*pu->userp == target);
*pu->userp = src;
}
} END_FOR_EACH_PTR(pu);
if (has_use_list(src))
concat_user_list(target->users, &src->users);
target->users = NULL;
}
static int overlapping_memop(struct instruction *a, struct instruction *b)
{
unsigned int a_start = bytes_to_bits(a->offset);
unsigned int b_start = bytes_to_bits(b->offset);
unsigned int a_size = a->size;
unsigned int b_size = b->size;
if (a_size + a_start <= b_start)
return 0;
if (b_size + b_start <= a_start)
return 0;
return 1;
}
static inline int same_memop(struct instruction *a, struct instruction *b)
{
return a->offset == b->offset && a->size == b->size;
}
static inline int distinct_symbols(pseudo_t a, pseudo_t b)
{
if (a->type != PSEUDO_SYM)
return 0;
if (b->type != PSEUDO_SYM)
return 0;
return a->sym != b->sym;
}
/*
* Return 1 if "dom" dominates the access to "pseudo"
* in "insn".
*
* Return 0 if it doesn't, and -1 if you don't know.
*/
int dominates(struct instruction *insn, struct instruction *dom, int local)
{
switch (dom->opcode) {
case OP_CALL: case OP_ENTRY:
return local ? 0 : -1;
case OP_LOAD: case OP_STORE:
break;
case OP_ASM:
if (dom->clobber_memory)
return -1;
if (dom->output_memory)
return -1;
return 0;
default:
return 0;
}
if (dom->src != insn->src) {
if (local)
return 0;
/* We don't think two explicitly different symbols ever alias */
if (distinct_symbols(insn->src, dom->src))
return 0;
/* We could try to do some alias analysis here */
return -1;
}
if (!same_memop(insn, dom)) {
if (!overlapping_memop(insn, dom))
return 0;
return -1;
}
return 1;
}
/* Kill a pseudo that is dead on exit from the bb */
// The context is:
// * the variable is not global but may have its address used (local/non-local)
// * the stores are only needed by others functions which would do some
// loads via the escaped address
// We start by the terminating BB (normal exit BB + no-return/unreachable)
// We walkup the BB' intruction backward
// * we're only concerned by loads, stores & calls
// * if we reach a call -> we have to stop if var is non-local
// * if we reach a load of our var -> we have to stop
// * if we reach a store of our var -> we can kill it, it's dead
// * we can ignore other stores & loads if the var is local
// * if we reach another store or load done via non-symbol access
// (so done via some address calculation) -> we have to stop
// If we reach the top of the BB we can recurse into the parents BBs.
static void kill_dead_stores_bb(pseudo_t pseudo, unsigned long generation, struct basic_block *bb, int local)
{
struct instruction *insn;
struct basic_block *parent;
if (bb->generation == generation)
return;
bb->generation = generation;
FOR_EACH_PTR_REVERSE(bb->insns, insn) {
if (!insn->bb)
continue;
switch (insn->opcode) {
case OP_LOAD:
if (insn->src == pseudo)
return;
break;
case OP_STORE:
if (insn->src == pseudo) {
kill_instruction_force(insn);
continue;
}
break;
case OP_CALL:
if (!local)
return;
default:
continue;
}
if (!local && insn->src->type != PSEUDO_SYM)
return;
} END_FOR_EACH_PTR_REVERSE(insn);
FOR_EACH_PTR(bb->parents, parent) {
if (bb_list_size(parent->children) > 1)
continue;
kill_dead_stores_bb(pseudo, generation, parent, local);
} END_FOR_EACH_PTR(parent);
}
void check_access(struct instruction *insn)
{
pseudo_t pseudo = insn->src;
if (insn->bb && pseudo->type == PSEUDO_SYM) {
int offset = insn->offset, bit = bytes_to_bits(offset) + insn->size;
struct symbol *sym = pseudo->sym;
if (sym->bit_size > 0 && (offset < 0 || bit > sym->bit_size)) {
if (insn->tainted)
return;
warning(insn->pos, "invalid access %s '%s' (%d %d)",
offset < 0 ? "below" : "past the end of",
show_ident(sym->ident), offset,
bits_to_bytes(sym->bit_size));
insn->tainted = 1;
}
}
}
static struct pseudo_user *first_user(pseudo_t p)
{
struct pseudo_user *pu;
FOR_EACH_PTR(p->users, pu) {
if (!pu)
continue;
return pu;
} END_FOR_EACH_PTR(pu);
return NULL;
}
void kill_dead_stores(struct entrypoint *ep, pseudo_t addr, int local)
{
unsigned long generation;
struct basic_block *bb;
switch (pseudo_user_list_size(addr->users)) {
case 0:
return;
case 1:
if (local) {
struct pseudo_user *pu = first_user(addr);
struct instruction *insn = pu->insn;
if (insn->opcode == OP_STORE) {
kill_instruction_force(insn);
return;
}
}
default:
break;
}
generation = ++bb_generation;
FOR_EACH_PTR(ep->bbs, bb) {
if (bb->children)
continue;
kill_dead_stores_bb(addr, generation, bb, local);
} END_FOR_EACH_PTR(bb);
}
static void mark_bb_reachable(struct basic_block *bb, unsigned long generation)
{
struct basic_block *child;
if (bb->generation == generation)
return;
bb->generation = generation;
FOR_EACH_PTR(bb->children, child) {
mark_bb_reachable(child, generation);
} END_FOR_EACH_PTR(child);
}
static void kill_defs(struct instruction *insn)
{
pseudo_t target = insn->target;
if (!has_use_list(target))
return;
if (target->def != insn)
return;
convert_instruction_target(insn, VOID);
}
void kill_bb(struct basic_block *bb)
{
struct instruction *insn;
struct basic_block *child, *parent;
FOR_EACH_PTR(bb->insns, insn) {
if (!insn->bb)
continue;
kill_instruction_force(insn);
kill_defs(insn);
/*
* We kill unreachable instructions even if they
* otherwise aren't "killable" (e.g. volatile loads)
*/
} END_FOR_EACH_PTR(insn);
bb->insns = NULL;
FOR_EACH_PTR(bb->children, child) {
remove_bb_from_list(&child->parents, bb, 0);
} END_FOR_EACH_PTR(child);
bb->children = NULL;
FOR_EACH_PTR(bb->parents, parent) {
remove_bb_from_list(&parent->children, bb, 0);
} END_FOR_EACH_PTR(parent);
bb->parents = NULL;
}
void kill_unreachable_bbs(struct entrypoint *ep)
{
struct basic_block *bb;
unsigned long generation = ++bb_generation;
mark_bb_reachable(ep->entry->bb, generation);
FOR_EACH_PTR(ep->bbs, bb) {
if (bb->generation == generation)
continue;
/* Mark it as being dead */
kill_bb(bb);
bb->ep = NULL;
DELETE_CURRENT_PTR(bb);
} END_FOR_EACH_PTR(bb);
PACK_PTR_LIST(&ep->bbs);
}
static int rewrite_parent_branch(struct basic_block *bb, struct basic_block *old, struct basic_block *new)
{
int changed = 0;
struct instruction *insn = last_instruction(bb->insns);
if (!insn)
return 0;
/* Infinite loops: let's not "optimize" them.. */
if (old == new)
return 0;
switch (insn->opcode) {
case OP_CBR:
changed |= rewrite_branch(bb, &insn->bb_false, old, new);
/* fall through */
case OP_BR:
changed |= rewrite_branch(bb, &insn->bb_true, old, new);
assert(changed);
return changed;
case OP_SWITCH: {
struct multijmp *jmp;
FOR_EACH_PTR(insn->multijmp_list, jmp) {
changed |= rewrite_branch(bb, &jmp->target, old, new);
} END_FOR_EACH_PTR(jmp);
assert(changed);
return changed;
}
default:
return 0;
}
}
static struct basic_block * rewrite_branch_bb(struct basic_block *bb, struct instruction *br)
{
struct basic_block *parent;
struct basic_block *target = br->bb_true;
if (br->opcode == OP_CBR) {
pseudo_t cond = br->cond;
if (cond->type != PSEUDO_VAL)
return NULL;
target = cond->value ? target : br->bb_false;
}
/*
* We can't do FOR_EACH_PTR() here, because the parent list
* may change when we rewrite the parent.
*/
while ((parent = first_basic_block(bb->parents)) != NULL) {
if (!rewrite_parent_branch(parent, bb, target))
return NULL;
}
return target;
}
static void vrfy_bb_in_list(struct basic_block *bb, struct basic_block_list *list)
{
if (bb) {
struct basic_block *tmp;
int no_bb_in_list = 0;
FOR_EACH_PTR(list, tmp) {
if (bb == tmp)
return;
} END_FOR_EACH_PTR(tmp);
assert(no_bb_in_list);
}
}
static void vrfy_parents(struct basic_block *bb)
{
struct basic_block *tmp;
FOR_EACH_PTR(bb->parents, tmp) {
vrfy_bb_in_list(bb, tmp->children);
} END_FOR_EACH_PTR(tmp);
}
static void vrfy_children(struct basic_block *bb)
{
struct basic_block *tmp;
struct instruction *br = last_instruction(bb->insns);
if (!br) {
assert(!bb->children);
return;
}
switch (br->opcode) {
struct multijmp *jmp;
case OP_CBR:
vrfy_bb_in_list(br->bb_false, bb->children);
/* fall through */
case OP_BR:
vrfy_bb_in_list(br->bb_true, bb->children);
break;
case OP_SWITCH:
case OP_COMPUTEDGOTO:
FOR_EACH_PTR(br->multijmp_list, jmp) {
vrfy_bb_in_list(jmp->target, bb->children);
} END_FOR_EACH_PTR(jmp);
break;
default:
break;
}
FOR_EACH_PTR(bb->children, tmp) {
vrfy_bb_in_list(bb, tmp->parents);
} END_FOR_EACH_PTR(tmp);
}
static void vrfy_bb_flow(struct basic_block *bb)
{
vrfy_children(bb);
vrfy_parents(bb);
}
void vrfy_flow(struct entrypoint *ep)
{
struct basic_block *bb;
struct basic_block *entry = ep->entry->bb;
FOR_EACH_PTR(ep->bbs, bb) {
if (bb == entry)
entry = NULL;
vrfy_bb_flow(bb);
} END_FOR_EACH_PTR(bb);
assert(!entry);
}
///
// change a switch or a conditional branch into a branch
int convert_to_jump(struct instruction *insn, struct basic_block *target)
{
struct basic_block *bb = insn->bb;
struct basic_block *child;
int changed = REPEAT_CSE;
switch (insn->opcode) {
case OP_CBR:
changed |= remove_phisources(insn->bb, insn->bb_true == target ? insn->bb_false : insn->bb_true);
break;
case OP_SWITCH:
changed |= remove_other_phisources(insn->bb, insn->multijmp_list, target);
break;
}
kill_use(&insn->cond);
insn->bb_true = target;
insn->bb_false = NULL;
insn->cond = NULL;
insn->size = 0;
insn->opcode = OP_BR;
FOR_EACH_PTR(bb->children, child) {
if (child == target) {
target = NULL; // leave first occurence
continue;
}
DELETE_CURRENT_PTR(child);
remove_bb_from_list(&child->parents, bb, 1);
changed |= REPEAT_CFG_CLEANUP;
} END_FOR_EACH_PTR(child);
PACK_PTR_LIST(&bb->children);
repeat_phase |= changed;
return changed;
}
static int retarget_parents(struct basic_block *bb, struct basic_block *target)
{
struct basic_block *parent;
/*
* We can't do FOR_EACH_PTR() here, because the parent list
* may change when we rewrite the parent.
*/
while ((parent = first_basic_block(bb->parents))) {
if (!rewrite_parent_branch(parent, bb, target))
return 0;
}
kill_bb(bb);
return REPEAT_CFG_CLEANUP;
}
static void remove_merging_phisrc(struct instruction *insn, struct basic_block *bot)
{
struct instruction *node = insn->phi_node;
pseudo_t phi;
if (!node) {
kill_instruction(insn);
return;
}
FOR_EACH_PTR(node->phi_list, phi) {
struct instruction *phisrc;
if (phi == VOID)
continue;
phisrc = phi->def;
if (phisrc->bb == bot) {
kill_instruction(insn);
return;
}
} END_FOR_EACH_PTR(phi);
}
static void remove_merging_phi(struct basic_block *top, struct instruction *insn)
{
pseudo_t phi;
FOR_EACH_PTR(insn->phi_list, phi) {
struct instruction *def;
if (phi == VOID)
continue;
def = phi->def;
if (def->bb != top)
continue;
convert_instruction_target(insn, def->src);
kill_instruction(def);
kill_instruction(insn);
} END_FOR_EACH_PTR(phi);
}
///
// merge two BBs
// @top: the first BB to be merged
// @bot: the second BB to be merged
static int merge_bb(struct basic_block *top, struct basic_block *bot)
{
struct instruction *insn;
struct basic_block *bb;
if (top == bot)
return 0;
top->children = bot->children;
bot->children = NULL;
bot->parents = NULL;
FOR_EACH_PTR(top->children, bb) {
replace_bb_in_list(&bb->parents, bot, top, 1);
} END_FOR_EACH_PTR(bb);
FOR_EACH_PTR(top->insns, insn) {
if (!insn->bb)
continue;
if (insn->opcode != OP_PHISOURCE)
continue;
remove_merging_phisrc(insn, bot);
} END_FOR_EACH_PTR(insn);
kill_instruction(delete_last_instruction(&top->insns));
FOR_EACH_PTR(bot->insns, insn) {
if (!insn->bb)
continue;
assert(insn->bb == bot);
switch (insn->opcode) {
case OP_PHI:
remove_merging_phi(top, insn);
continue;
}
insn->bb = top;
add_instruction(&top->insns, insn);
} END_FOR_EACH_PTR(insn);
bot->insns = NULL;
bot->ep = NULL;
return REPEAT_CFG_CLEANUP;
}
///
// early simplification of the CFG
// Three things are done here:
// # inactive BB are removed
// # branches to a 'forwarder' BB are redirected to the forwardee.
// # merge single-child/single-parent BBs.
int simplify_cfg_early(struct entrypoint *ep)
{
struct basic_block *bb;
int changed = 0;
FOR_EACH_PTR_REVERSE(ep->bbs, bb) {
struct instruction *insn;
struct basic_block *tgt;
if (!bb->ep) {
DELETE_CURRENT_PTR(bb);
changed = REPEAT_CFG_CLEANUP;
continue;
}
insn = last_instruction(bb->insns);
if (!insn)
continue;
switch (insn->opcode) {
case OP_BR:
tgt = insn->bb_true;
if (bb_is_forwarder(bb))
changed |= retarget_parents(bb, tgt);
else if (bb_list_size(tgt->parents) == 1)
changed |= merge_bb(bb, tgt);
break;
}
} END_FOR_EACH_PTR_REVERSE(bb);
return changed;
}
void pack_basic_blocks(struct entrypoint *ep)
{
struct basic_block *bb;
/* See if we can merge a bb into another one.. */
FOR_EACH_PTR(ep->bbs, bb) {
struct instruction *first;
struct basic_block *parent, *child, *last;
if (!bb_reachable(bb))
continue;
/*
* Just a branch?
*/
FOR_EACH_PTR(bb->insns, first) {
if (!first->bb)
continue;
switch (first->opcode) {
case OP_NOP:
case OP_INLINED_CALL:
continue;
case OP_CBR:
case OP_BR: {
struct basic_block *replace;
replace = rewrite_branch_bb(bb, first);
if (replace) {
kill_bb(bb);
goto no_merge;