From 3ff66f423dcd8aaaccfec7f14aae23f0045fa188 Mon Sep 17 00:00:00 2001 From: Claus Fieker Date: Mon, 11 Nov 2024 09:09:29 +0100 Subject: [PATCH] add mult. group --- src/LocalField/Conjugates.jl | 3 + src/NumField/NfAbs/MultDep.jl | 127 ++++++++++++++++++++++++++++++---- test/NumField/NfAbs/NfAbs.jl | 5 +- 3 files changed, 122 insertions(+), 13 deletions(-) diff --git a/src/LocalField/Conjugates.jl b/src/LocalField/Conjugates.jl index 379984d332..3cd1dbea05 100644 --- a/src/LocalField/Conjugates.jl +++ b/src/LocalField/Conjugates.jl @@ -269,6 +269,9 @@ end function conjugates_log(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, C::qAdicConj, n::Int = 10; all::Bool = false, flat::Bool = true) first = true local res::Vector{QadicFieldElem} + if length(a.fac) == 0 + res = conjugates_log(one(base_ring(parent(a))), C, n, flat = false, all = false) + end for (k, v) = a.fac try y = conjugates_log(k, C, n, flat = false, all = false) diff --git a/src/NumField/NfAbs/MultDep.jl b/src/NumField/NfAbs/MultDep.jl index 2c30422420..ceb5af9003 100644 --- a/src/NumField/NfAbs/MultDep.jl +++ b/src/NumField/NfAbs/MultDep.jl @@ -46,7 +46,7 @@ function syzygies_sunits_mod_units(A::Vector{AbsSimpleNumFieldElem}; use_ge::Boo end h, t = Hecke.hnf_with_transform(matrix(M)) h = h[1:rank(h), :] - return h, t[nrows(h)+1:end, :], cp + return t[1:nrows(h), :], t[nrows(h)+1:end, :], cp # THINK! do we want or not... # - M is naturally sparse, hence it makes sense # - for this application we need all units, hence the complete @@ -192,6 +192,10 @@ function valuation(a::AbsSimpleNumFieldElem, p::GeIdeal) return valuation(a, p.a) end +#TODO: don't use Gram Schidt over Q, use reals. If M is LLL, then +# a low precision should be OK +#TODO: an interface to reduce several v +#TODO: a sane implementation that is more memory friendly (views, ...) """ reduce the rows of v modulo the lattice spanned by the rows of M. M should be LLL reduced. @@ -213,6 +217,8 @@ A a vector of units in fac-elem form. Find matrices U and V s.th. A^U is a basis for /Tor and A^V is a generating system for the relations of A in Units/Tor + +The pAdic Ctx is returned as well """ function syzygies_units_mod_tor(A::Vector{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}}) p = next_prime(100) @@ -288,7 +294,7 @@ function syzygies_units_mod_tor(A::Vector{FacElem{AbsSimpleNumFieldElem, AbsSimp if !verify_gamma(push!(copy(u), a), gamma, ZZRingElem(p)^prec) prec *= 2 @vprint :qAdic 1 "increase prec to ", prec - lu = matrix([conjugates_log(x, C, prec, all = false, flat = true) for x = u])' + lu = transpose(matrix([conjugates_log(x, C, prec, all = false, flat = true) for x = u])) continue end @assert length(gamma) == length(u)+1 @@ -355,14 +361,14 @@ function syzygies_units_mod_tor(A::Vector{FacElem{AbsSimpleNumFieldElem, AbsSimp #rels: A[tor], .. * V nt = zero_matrix(ZZ, length(A), length(A)) for i=1:length(indep) - nt[indep[i], i] = 1 + nt[i, indep[i]] = 1 end for i=1:length(dep) - nt[dep[i], i+length(indep)] = 1 + nt[i+length(indep), dep[i]] = 1 end - @assert matrix([collect(1:length(A))]) * nt == matrix([vcat(indep, dep)]) - rel = nt*transpose(V) - return nt*transpose(U), rel +# @assert nt*matrix([collect(1:length(A))]) == matrix([vcat(indep, dep)]) + rel = V*nt + return U*nt, rel, C end @@ -478,11 +484,13 @@ function syzygies_tor(A::Vector{FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField k, mk = kernel(h) i, mi = image(h) @assert ngens(i) == 1 - return preimage(h, mi(i[1])).coeff, vcat([mk(x).coeff for x = gens(k)]...) + return preimage(h, mi(i[1])).coeff, vcat([mk(x).coeff for x = gens(k)]...), order(i[1]) end end -""" +@doc raw""" + syzygies(A::Vector{AbsSimpleNumFieldElem}) -> ZZMatrix + Given non-zero elements A[i] in K, find a basis for the relations, returned as a matrix. """ @@ -490,9 +498,104 @@ function syzygies(A::Vector{AbsSimpleNumFieldElem}; use_ge::Bool = false, max_or _, t, _ = syzygies_sunits_mod_units(A; use_ge, max_ord) u = [FacElem(A, t[i, :]) for i = 1:nrows(t)] _, tt = syzygies_units_mod_tor(u) - u = Hecke._transform(u, tt) - _, ttt = syzygies_tor(u) - return ttt*transpose(tt)*t + u = Hecke._transform(u, transpose(tt)) + _, ttt, _ = syzygies_tor(u) + return ttt*tt*t +end + +@doc raw""" + multiplicative_group(A::Vector{AbsSimpleNumFieldElem}) -> FinGenAbGroup, Map + +Return the subgroup of the multiplicative group of the number field generated +by the elements in `A` as an abstract abelian group together with a map +mapping group elements to number field elements and vice-versa. +""" +function Hecke.multiplicative_group(A::Vector{AbsSimpleNumFieldElem}; use_ge::Bool = false, max_ord::Union{Nothing, AbsSimpleNumFieldOrder} = nothing, task::Symbol = :all) + + S, T, cp = syzygies_sunits_mod_units(A; use_ge, max_ord) + u = [FacElem(A, T[i, :]) for i = 1:nrows(T)] + g1 = [FacElem(A, S[i, :]) for i = 1:nrows(S)] #gens for mult grp/ units + + U, T, C = syzygies_units_mod_tor(u) + g2 = Hecke._transform(u, transpose(U)) + u = Hecke._transform(u, transpose(T)) + + Ut, _, o = syzygies_tor(u) + + t = evaluate(Hecke._transform(u, transpose(Ut))[1]) + + G = abelian_group(vcat([0 for i=1:length(g1)+length(g2)], [o])) + g = vcat(g1, g2, [FacElem(t)]) + + function im(a::FinGenAbGroupElem) + @assert parent(a) == G + return prod(g[i]^a[i] for i = 1:length(g)) + end + + local log_mat::Union{Generic.MatSpaceElem{PadicFieldElem}, Nothing} = nothing + local prec::Int = 20 + local gamma::Vector{ZZRingElem} + + function pr(a::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}) + @assert base_ring(parent(a)) == parent(A[1]) + c = ZZRingElem[] + for i=1:length(cp) + v = valuation(a, cp[i]) + push!(c, divexact(v, valuation(g1[i], cp[i]))) + a *= g1[i]^-c[end] + end + + if log_mat === nothing + log_mat = matrix([conjugates_log(x, C, prec, all = false, flat = true) for x = g2]) + end + while true + log_a = matrix([conjugates_log(a, C, prec, all = false, flat = true)]) + + lv = vcat(log_mat, log_a) + #check_precision and change + @vtime :qAdic 1 k = kernel(lv, side = :left) + + @assert nrows(k) < 2 + if nrows(k) == 0 + error("not in the image") + else # length == 1 extend the module + @vprint :qAdic 1 "looking for relation\n" + s = QQFieldElem[] + for x in k[1, :] + @vtime :qAdic 1 y = lift_reco(FlintQQ, x, reco = true) + if y === nothing + prec *= 2 + @vprint :qAdic 1 "increase prec to ", prec + log_mat = transpose(matrix([conjugates_log(x, C, prec, all = false, flat = true) for x = g2])) + break + end + push!(s, y) + end + if length(s) < ncols(k) + continue + end + d = reduce(lcm, map(denominator, s)) + gamma = ZZRingElem[FlintZZ(x*d)::ZZRingElem for x = s] + @assert reduce(gcd, gamma) == 1 # should be a primitive relation + if !verify_gamma(push!(copy(g2), a), gamma, prime(base_ring(log_mat), prec)) + prec *= 2 + @vprint :qAdic 1 "increase prec to ", prec + log_mat = transpose(matrix([conjugates_log(x, C, prec, all = false, flat = true) for x = g2])) + continue + end + @assert length(gamma) == length(g2)+1 + break + end + end + for i=1:length(gamma)-1 + push!(c, divexact(gamma[i], -gamma[end])) + end + _, _c, _ = syzygies_tor(typeof(a)[g[end], a*prod(g2[i]^-gamma[i] for i=1:length(gamma)-1)]) + + push!(c, divexact(_c[1,1], _c[1,2])) + return G(c) + end + return G, MapFromFunc(G, parent(g1[1]), im, pr) end export syzygies diff --git a/test/NumField/NfAbs/NfAbs.jl b/test/NumField/NfAbs/NfAbs.jl index 1e32a3c5dc..32688e18d9 100644 --- a/test/NumField/NfAbs/NfAbs.jl +++ b/test/NumField/NfAbs/NfAbs.jl @@ -88,7 +88,7 @@ end @testset "NumField/NfAbs/MultDep" begin - k, a = wildanger_field(5,13); + k, a = wildanger_field(5,13; cached = false); zk = lll(maximal_order(k)) class_group(zk) h = zk.__attrs[:ClassGrpCtx] @@ -96,6 +96,9 @@ end r = [x for x = r if isa(x, AbsSimpleNumFieldElem)] q = Hecke.syzygies(r) @test all(isone, evaluate(FacElem(r, q[i, :])) for i=1:nrows(q)) + + U, mU = Hecke.multiplicative_group(r) + @test preimage(mU, mU(U[2])) == U[2] end