From a116eb9e53bf51e948a9e447f0e6b4ee1c611d30 Mon Sep 17 00:00:00 2001 From: Max Horn Date: Wed, 28 Feb 2024 14:02:02 +0100 Subject: [PATCH] FreeModule -> free_module; VectorSpace -> vector_space (#1422) --- src/NumField/Subfields.jl | 2 +- src/NumFieldOrd/NfOrd/Ideal/Relative.jl | 4 ++-- src/QuadForm/Herm/GenusRep.jl | 2 +- 3 files changed, 4 insertions(+), 4 deletions(-) diff --git a/src/NumField/Subfields.jl b/src/NumField/Subfields.jl index e4c2536795..9f482b9d1e 100644 --- a/src/NumField/Subfields.jl +++ b/src/NumField/Subfields.jl @@ -14,7 +14,7 @@ function _subfield_basis(K::S, as::Vector{T}) where { k = base_field(K) d = degree(K) - Kvs = VectorSpace(k, d) + Kvs = vector_space(k, d) # We transition the coefficients of a in reverse order, so that the # first vector in the row reduced echelon form yields the highest # degree among all elements of Fas. diff --git a/src/NumFieldOrd/NfOrd/Ideal/Relative.jl b/src/NumFieldOrd/NfOrd/Ideal/Relative.jl index 9168e81c97..8c06a8c031 100644 --- a/src/NumFieldOrd/NfOrd/Ideal/Relative.jl +++ b/src/NumFieldOrd/NfOrd/Ideal/Relative.jl @@ -54,9 +54,9 @@ function minimum(m::T, I::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumF bk = map(m, basis(maximal_order(k), k)) bK = map(K, basis(I)) d = lcm(lcm(map(denominator, bk)), lcm(map(denominator, bK))) - F = FreeModule(FlintZZ, degree(K)) + F = free_module(FlintZZ, degree(K)) - hsk = ModuleHomomorphism(FreeModule(FlintZZ, degree(k)), F, elem_type(F)[F(matrix(FlintZZ, 1, degree(K), coefficients(d*x))) for x = bk]) + hsk = ModuleHomomorphism(free_module(FlintZZ, degree(k)), F, elem_type(F)[F(matrix(FlintZZ, 1, degree(K), coefficients(d*x))) for x = bk]) hsK = ModuleHomomorphism(F, F, elem_type(F)[F(matrix(FlintZZ, 1, degree(K), coefficients(d*x))) for x = bK]) sk = image(hsk) imhsK = image(hsK) diff --git a/src/QuadForm/Herm/GenusRep.jl b/src/QuadForm/Herm/GenusRep.jl index 9ce0dc0279..6c0bc825fe 100644 --- a/src/QuadForm/Herm/GenusRep.jl +++ b/src/QuadForm/Herm/GenusRep.jl @@ -519,7 +519,7 @@ function genus_generators(L::HermLat) VD = Int[ valuation(D, P) for P in PP ] K, k = kernel(nnorm) F = GF(2, cached = false) - V = VectorSpace(F, length(PP)) + V = vector_space(F, length(PP)) S = elem_type(V)[] for u in gens(K) z = elem_type(F)[]