forked from HugAILab/HugNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
416 lines (391 loc) · 14.1 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
# -*- coding: utf-8 -*-
# @Time : 2022/11/25 2:52 p.m.
# @Author : JianingWang
# @File : config.py
"""
This file is the configures for HugNLP.
"""
from dataclasses import dataclass, field, asdict
from enum import Enum
from typing import Optional
from transformers import MODEL_FOR_MASKED_LM_MAPPING
from transformers import TrainingArguments as TransformersTrainingArguments
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": "The model checkpoint for weights initialization."
"Don't set if you want to train a model from scratch."
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_overrides: Optional[str] = field(
default=None,
metadata={
"help": "Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
early_stopping_patience: int = field(
default=None,
metadata={"help": "early_stopping_patience for early stopping callback"}
)
freeze_epochs: Optional[float] = field(
default=None,
metadata={
"help": "freezing parameters before epoch iterations, float (e.g., 0.5)"
}
)
freeze_keyword: Optional[str] = field(
default="encoder",
metadata={
"help": "freezing the parameters layers with name 'keyword'"
}
)
ema: bool = field(
default=False,
metadata={"help": "whether use ema"}
)
ema_decay: float = field(
default=0.999,
metadata={"help": "ema decay"}
)
do_lower_case: bool = field(
default=False,
metadata={"help": "do_lower_case"}
)
use_prompt_for_cls: bool = field(
default=False,
metadata={
"help": "Whether to use prompt-based learning settings. If true, that means use pre-trained task with specific"
"template to make predictions"
}
)
use_freezing: bool = field(
default=False,
metadata={
"help": "Whether to use parameter-efficient settings. If true, that means freezing the parameters of the backbone, and only"
"tune the new initialized modules (e.g., adapter, prefix, ptuning, etc.)"
}
)
adapter_choice: str = field(
default="LiST",
metadata={"help": "The choice of adapter, list, lora, houlsby."},
)
adapter_dim: int = field(
default=128,
metadata={"help": "The hidden size of adapter. default is 128."},
)
lora_dim: int = field(
default=0,
metadata={"help": "The hidden size of lora, default is 0."},
)
lora_module_name: str = field(
default="decoder.layers.",
metadata={"help": "The scope of LoRA."},
)
only_optimize_lora: bool = field(
default=False,
metadata={"help": "Only optimize the LoRA parameters."},
)
pre_seq_len: int = field(
default=4,
metadata={
"help": "The length of prompt"
}
)
prefix_projection: bool = field(
default=False,
metadata={
"help": "Apply a two-layer MLP head over the prefix embeddings"
}
)
prefix_hidden_size: int = field(
default=512,
metadata={
"help": "The hidden size of the MLP projection head in Prefix Encoder if prefix projection is used"
}
)
hidden_dropout_prob: float = field(
default=0.1,
metadata={
"help": "The dropout probability used in the models"
}
)
def __post_init__(self):
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
"--config_overrides can't be used in combination with --config_name or --model_name_or_path"
)
def to_dict(self):
d = asdict(self)
for k, v in d.items():
if isinstance(v, Enum):
d[k] = v.value
if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
d[k] = [x.value for x in v]
return d
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task_name: Optional[str] = field(
default=None, metadata={"help": "The name of the task."}
)
task_type: Optional[str] = field(
default="classification", metadata={"help": "task type, e.g., classification, mlm, head_cls"}
)
data_dir: Optional[str] = field(
default=None, metadata={"help": "data_dir: the path of data resource"}
)
exp_name: Optional[str] = field(
default=None, metadata={"help": "The name of the experiment."}
)
tracking_uri: Optional[str] = field(
default=None, metadata={"help": "The uri of mlflow."}
)
mlflow_location: Optional[str] = field(
default=None, metadata={"help": "The location of mlflow tracking and artifact"}
)
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input test data file."}
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated."
},
)
max_eval_seq_length: Optional[int] = field(
default=None,
metadata={
"help": "The maximum total input sequence length after tokenization for eval and test set. Sequences longer "
"than this will be truncated."
},
)
block_size: int = field(
default=512,
metadata={
"help": "The length of each block"
}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
mlm_probability: float = field(
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
)
line_by_line: bool = field(
default=False,
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": "Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of test examples to this "
"value if set."
},
)
return_entity_level_metrics: bool = field(
default=False,
metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."},
)
cross_validation_num: Optional[int] = field(
default=None,
metadata={"help": "cross_validation_num"}
)
# Question Answer
null_score_diff_threshold: float = field(
default=0.0,
metadata={
"help": "The threshold used to select the null answer: if the best answer has a score that is less than "
"the score of the null answer minus this threshold, the null answer is selected for this example. "
"Only useful when `version_2_with_negative=True`."
},
)
doc_stride: int = field(
default=128,
metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."},
)
n_best_size: int = field(
default=20,
metadata={"help": "The total number of n-best predictions to generate when looking for an answer."},
)
max_answer_length: int = field(
default=30,
metadata={
"help": "The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
},
)
version_2_with_negative: bool = field(
default=False, metadata={"help": "If true, some of the examples do not have an answer."}
)
keep_predict_labels: Optional[bool] = field(
default=False, metadata={"help": "keep_predict_labels"}
)
post_tokenizer: Optional[bool] = field(
default=False, metadata={"help": "post_tokenizer"}
)
user_defined: Optional[str] = field(
default="", metadata={"help": "User defined by you-self, split by '\space' e.g. 'name=xxx year=2000'"}
)
def to_dict(self):
d = asdict(self)
for k, v in d.items():
if isinstance(v, Enum):
d[k] = v.value
if isinstance(v, list) and len(v) > 0 and isinstance(v[0], Enum):
d[k] = [x.value for x in v]
return d
@dataclass
class TrainingArguments(TransformersTrainingArguments):
do_adv: bool = field(
default=False,
metadata={"help": "do fgm adversarial attack."},
)
do_predict_during_train: bool = field(
default=False
)
pre_train_from_scratch: bool = field(
default=False,
metadata={"help": "from scratch"}
)
@dataclass
class SemiSupervisedTrainingArguments:
use_semi: bool = field(
default=False, metadata={"help": "If true, the training process will be transformed into self-training framework."}
)
unlabeled_data_num: int = field(
default=-1,
metadata={
"help": "The total number of unlabeled data. If set -1 means all the training data (expect of few-shot labeled data)"
}
)
unlabeled_data_batch_size: int = field(
default=16,
metadata={
"help": "The number of unlabeled data in one batch."
}
)
pseudo_sample_num_or_ratio: float = field(
default=0.1,
metadata={
"help": "The number / ratio of pseudo-labeled data sampling. For example, if have 1000 unlabeled data, 0.1 / 100 means sampling 100 pseduo-labeled data."
}
)
teacher_training_epoch: int = field(
default=10,
metadata={
"help": "The epoch number of teacher training at the beginning of self-training."
}
)
teacher_tuning_epoch: int = field(
default=10,
metadata={
"help": "The epoch number of teacher tuning in each self-training iteration."
}
)
student_training_epoch: int = field(
default=16,
metadata={
"help": "The epoch number of student training in each self-training iteration."
}
)
student_learning_rate: float = field(
default=1e-5,
metadata={
"help": "The learning rate of student training in each self-training iteration."
}
)
self_training_epoch: int = field(
default=30,
metadata={
"help": "The number of teacher-student iteration ."
}
)
post_student_train: bool = field(
default=False,
metadata={
"help": "Whether to train a student model on large pseudo-labeled data after self-training iteration"
}
)