diff --git a/perception/multi_object_tracker/package.xml b/perception/multi_object_tracker/package.xml index e3172dfd22349..119919b5f076c 100644 --- a/perception/multi_object_tracker/package.xml +++ b/perception/multi_object_tracker/package.xml @@ -13,6 +13,7 @@ eigen3_cmake_module autoware_auto_perception_msgs + diagnostic_updater eigen kalman_filter mussp @@ -24,7 +25,6 @@ tier4_autoware_utils tier4_perception_msgs unique_identifier_msgs - ament_lint_auto autoware_lint_common diff --git a/planning/planning_debug_tools/scripts/perception_replayer/perception_replayer_common.py b/planning/planning_debug_tools/scripts/perception_replayer/perception_replayer_common.py index 7bf54c0278a27..2d876e2c93a0a 100644 --- a/planning/planning_debug_tools/scripts/perception_replayer/perception_replayer_common.py +++ b/planning/planning_debug_tools/scripts/perception_replayer/perception_replayer_common.py @@ -22,8 +22,8 @@ from autoware_auto_perception_msgs.msg import DetectedObjects from autoware_auto_perception_msgs.msg import PredictedObjects from autoware_auto_perception_msgs.msg import TrackedObjects -from autoware_auto_perception_msgs.msg import TrafficSignalArray as AutoTrafficSignalArray from autoware_perception_msgs.msg import TrafficSignalArray +from geometry_msgs.msg import PoseStamped from geometry_msgs.msg import PoseWithCovarianceStamped from nav_msgs.msg import Odometry import psutil @@ -32,6 +32,7 @@ from rosbag2_py import StorageFilter from rosidl_runtime_py.utilities import get_message from sensor_msgs.msg import PointCloud2 +from utils import get_starting_time from utils import open_reader @@ -40,11 +41,10 @@ def __init__(self, args, name): super().__init__(name) self.args = args - self.ego_pose = None + self.ego_odom = None self.rosbag_objects_data = [] self.rosbag_ego_odom_data = [] self.rosbag_traffic_signals_data = [] - self.is_auto_traffic_signals = False # subscriber self.sub_odom = self.create_subscription( @@ -76,31 +76,33 @@ def __init__(self, args, name): Odometry, "/perception_reproducer/rosbag_ego_odom", 1 ) + self.goal_pose_publisher = self.create_publisher( + PoseStamped, "/planning/mission_planning/goal", 1 + ) + + self.traffic_signals_pub = self.create_publisher( + TrafficSignalArray, "/perception/traffic_light_recognition/traffic_signals", 1 + ) + # load rosbag print("Stared loading rosbag") if os.path.isdir(args.bag): - for bag_file in sorted(os.listdir(args.bag)): - if bag_file.endswith(self.args.rosbag_format): - self.load_rosbag(args.bag + "/" + bag_file) + bags = [ + os.path.join(args.bag, base_name) + for base_name in os.listdir(args.bag) + if base_name.endswith(args.rosbag_format) + ] + for bag_file in sorted(bags, key=get_starting_time): + self.load_rosbag(bag_file) else: self.load_rosbag(args.bag) print("Ended loading rosbag") - # temporary support old auto msgs - if self.is_auto_traffic_signals: - self.auto_traffic_signals_pub = self.create_publisher( - AutoTrafficSignalArray, "/perception/traffic_light_recognition/traffic_signals", 1 - ) - else: - self.traffic_signals_pub = self.create_publisher( - TrafficSignalArray, "/perception/traffic_light_recognition/traffic_signals", 1 - ) - # wait for ready to publish/subscribe time.sleep(1.0) def on_odom(self, odom): - self.ego_pose = odom.pose.pose + self.ego_odom = odom def load_rosbag(self, rosbag2_path: str): reader = open_reader(str(rosbag2_path)) @@ -126,14 +128,18 @@ def load_rosbag(self, rosbag2_path: str): msg_type = get_message(type_map[topic]) msg = deserialize_message(data, msg_type) if topic == objects_topic: + assert isinstance( + msg, self.objects_pub.msg_type + ), f"Unsupported conversion from {type(msg)}" self.rosbag_objects_data.append((stamp, msg)) if topic == ego_odom_topic: + assert isinstance(msg, Odometry), f"Unsupported conversion from {type(msg)}" self.rosbag_ego_odom_data.append((stamp, msg)) if topic == traffic_signals_topic: + assert isinstance( + msg, TrafficSignalArray + ), f"Unsupported conversion from {type(msg)}" self.rosbag_traffic_signals_data.append((stamp, msg)) - self.is_auto_traffic_signals = ( - "autoware_auto_perception_msgs" in type(msg).__module__ - ) def kill_online_perception_node(self): # kill node if required @@ -153,6 +159,9 @@ def kill_online_perception_node(self): pass def binary_search(self, data, timestamp): + if not data: + return None + if data[-1][0] < timestamp: return data[-1][1] elif data[0][0] > timestamp: diff --git a/planning/planning_debug_tools/scripts/perception_replayer/perception_reproducer.py b/planning/planning_debug_tools/scripts/perception_replayer/perception_reproducer.py index b2b6a3c0ef38e..b096aa3445f0b 100755 --- a/planning/planning_debug_tools/scripts/perception_replayer/perception_reproducer.py +++ b/planning/planning_debug_tools/scripts/perception_replayer/perception_reproducer.py @@ -15,8 +15,10 @@ # limitations under the License. import argparse +from collections import deque import pickle +from geometry_msgs.msg import PoseWithCovarianceStamped import numpy as np from perception_replayer_common import PerceptionReplayerCommon import rclpy @@ -27,16 +29,44 @@ class PerceptionReproducer(PerceptionReplayerCommon): def __init__(self, args): + self.rosbag_ego_odom_search_radius = args.search_radius + self.ego_odom_search_radius = self.rosbag_ego_odom_search_radius + self.reproduce_cool_down = args.reproduce_cool_down if args.search_radius != 0.0 else 0.0 + super().__init__(args, "perception_reproducer") - self.prev_traffic_signals_msg = None self.stopwatch = StopWatch(self.args.verbose) # for debug + # refresh cool down for setting initial pose in psim. + self.sub_init_pos = self.create_subscription( + PoseWithCovarianceStamped, "/initialpose", lambda msg: self.cool_down_indices.clear(), 1 + ) + # to make some data to accelerate computation self.preprocess_data() + self.reproduce_sequence_indices = deque() # contains ego_odom_idx + self.cool_down_indices = deque() # contains ego_odom_idx + self.ego_odom_id2last_published_timestamp = {} # for checking last published timestamp. + self.last_sequenced_ego_pose = None + + pose_timestamp, self.prev_ego_odom_msg = self.rosbag_ego_odom_data[0] + self.perv_objects_msg, self.prev_traffic_signals_msg = self.find_topics_by_timestamp( + pose_timestamp + ) + self.memorized_original_objects_msg = ( + self.memorized_noised_objects_msg + ) = self.perv_objects_msg + # start main timer callback - self.timer = self.create_timer(0.1, self.on_timer) + + average_ego_odom_interval = np.mean( + [ + (self.rosbag_ego_odom_data[i][0] - self.rosbag_ego_odom_data[i - 1][0]) / 1e9 + for i in range(1, len(self.rosbag_ego_odom_data)) + ] + ) + self.timer = self.create_timer(average_ego_odom_interval, self.on_timer) # kill perception process to avoid a conflict of the perception topics self.timer_check_perception_process = self.create_timer(3.0, self.on_timer_kill_perception) @@ -60,84 +90,202 @@ def on_timer(self): print("\n-- on_timer start --") self.stopwatch.tic("total on_timer") - timestamp = self.get_clock().now().to_msg() + timestamp = self.get_clock().now() + timestamp_msg = timestamp.to_msg() if self.args.detected_object: - pointcloud_msg = create_empty_pointcloud(timestamp) + pointcloud_msg = create_empty_pointcloud(timestamp_msg) self.pointcloud_pub.publish(pointcloud_msg) - if not self.ego_pose: - print("No ego pose found.") + if not self.ego_odom: + print("No ego odom found.") return - # find nearest ego odom by simulation observation - self.stopwatch.tic("find_nearest_ego_odom_by_observation") - ego_odom = self.find_nearest_ego_odom_by_observation(self.ego_pose) - pose_timestamp = ego_odom[0] - log_ego_pose = ego_odom[1].pose.pose - self.stopwatch.toc("find_nearest_ego_odom_by_observation") + ego_pose = self.ego_odom.pose.pose + dist_moved = ( + np.sqrt( + (ego_pose.position.x - self.last_sequenced_ego_pose.position.x) ** 2 + + (ego_pose.position.y - self.last_sequenced_ego_pose.position.y) ** 2 + ) + if self.last_sequenced_ego_pose + else 999 + ) - # extract message by the nearest ego odom timestamp - self.stopwatch.tic("find_topics_by_timestamp") - msgs_orig = self.find_topics_by_timestamp(pose_timestamp) - self.stopwatch.toc("find_topics_by_timestamp") + # Update the reproduce sequence if the distance moved is greater than the search radius. + if dist_moved > self.ego_odom_search_radius: + self.last_sequenced_ego_pose = ego_pose - # copy the messages - self.stopwatch.tic("message deepcopy") - if self.args.detected_object: - msgs = pickle.loads(pickle.dumps(msgs_orig)) # this is x5 faster than deepcopy - objects_msg = msgs[0] - traffic_signals_msg = msgs[1] + # find the nearest ego odom by simulation observation + self.stopwatch.tic("find_nearest_ego_odom_by_observation") + nearby_ego_odom_indies = self.find_nearby_ego_odom_indies( + [ego_pose], self.ego_odom_search_radius + ) + nearby_ego_odom_indies = [ + self.rosbag_ego_odom_data[idx][1].pose.pose for idx in nearby_ego_odom_indies + ] + if not nearby_ego_odom_indies: + nearest_ego_odom_ind = self.find_nearest_ego_odom_index(ego_pose) + nearby_ego_odom_indies += [ + self.rosbag_ego_odom_data[nearest_ego_odom_ind][1].pose.pose + ] + self.stopwatch.toc("find_nearest_ego_odom_by_observation") + + # find a list of ego odom around the nearest_ego_odom_pos. + self.stopwatch.tic("find_nearby_ego_odom_indies") + ego_odom_indices = self.find_nearby_ego_odom_indies( + nearby_ego_odom_indies, self.rosbag_ego_odom_search_radius + ) + self.stopwatch.toc("find_nearby_ego_odom_indies") + + # update reproduce_sequence with those data not in cool down list. + while self.cool_down_indices: + last_timestamp = self.ego_odom_id2last_published_timestamp[ + self.cool_down_indices[0] + ] + if (timestamp - last_timestamp).nanoseconds / 1e9 > self.reproduce_cool_down: + self.cool_down_indices.popleft() + else: + break + + self.stopwatch.tic("update reproduce_sequence") + ego_odom_indices = [ + idx for idx in ego_odom_indices if idx not in self.cool_down_indices + ] + ego_odom_indices = sorted(ego_odom_indices) + self.reproduce_sequence_indices = deque(ego_odom_indices) + self.stopwatch.toc("update reproduce_sequence") + + if self.args.verbose: + print("reproduce_sequence_indices: ", list(self.reproduce_sequence_indices)[:20]) + + # Get messages + repeat_flag = len(self.reproduce_sequence_indices) == 0 + + # Add an additional constraint to avoid publishing too fast when there is a speed gap between the ego and the rosbag's ego when ego is departing/stopping while rosbag's ego is moving. + if not repeat_flag: + ego_speed = np.sqrt( + self.ego_odom.twist.twist.linear.x**2 + self.ego_odom.twist.twist.linear.y**2 + ) + ego_odom_idx = self.reproduce_sequence_indices[0] + _, ego_odom_msg = self.rosbag_ego_odom_data[ego_odom_idx] + ego_rosbag_speed = np.sqrt( + ego_odom_msg.twist.twist.linear.x**2 + ego_odom_msg.twist.twist.linear.y**2 + ) + + ego_rosbag_dist = np.sqrt( + (ego_pose.position.x - ego_odom_msg.pose.pose.position.x) ** 2 + + (ego_pose.position.y - ego_odom_msg.pose.pose.position.y) ** 2 + ) + repeat_flag = ego_rosbag_speed > ego_speed * 5 and ego_rosbag_dist > 1.0 + # set the speed threshold to many (5) times then ego_speed because this constraint is mainly for departing/stopping (ego speed is close to 0). + + if not repeat_flag: + self.stopwatch.tic("find_topics_by_timestamp") + ego_odom_idx = self.reproduce_sequence_indices.popleft() + # extract messages by the nearest ego odom timestamp + pose_timestamp, ego_odom_msg = self.rosbag_ego_odom_data[ego_odom_idx] + objects_msg, traffic_signals_msg = self.find_topics_by_timestamp(pose_timestamp) + self.stopwatch.toc("find_topics_by_timestamp") + # update cool down info. + self.ego_odom_id2last_published_timestamp[ego_odom_idx] = timestamp + self.cool_down_indices.append(ego_odom_idx) else: - # NOTE: No need to deepcopy since only timestamp will be changed and it will be changed every time correctly. - objects_msg = msgs_orig[0] - traffic_signals_msg = msgs_orig[1] - self.stopwatch.toc("message deepcopy") + ego_odom_msg = self.prev_ego_odom_msg + objects_msg = self.perv_objects_msg + traffic_signals_msg = self.prev_traffic_signals_msg + # Transform and publish messages. self.stopwatch.tic("transform and publish") + # ego odom + if ego_odom_msg: + self.prev_ego_odom_msg = ego_odom_msg + self.recorded_ego_pub.publish(ego_odom_msg) # objects + objects_msg = objects_msg if objects_msg else self.perv_objects_msg if objects_msg: - objects_msg.header.stamp = timestamp + self.perv_objects_msg = objects_msg + objects_msg.header.stamp = timestamp_msg + + # add noise to repeat published objects + if repeat_flag and self.args.noise: + objects_msg = self.add_perception_noise(objects_msg) + if self.args.detected_object: - translate_objects_coordinate(self.ego_pose, log_ego_pose, objects_msg) - self.objects_pub.publish(objects_msg) + objects_msg = self.copy_message(objects_msg) + translate_objects_coordinate(ego_pose, ego_odom_msg.pose.pose, objects_msg) - # ego odom - self.recorded_ego_pub.publish(ego_odom[1]) + self.objects_pub.publish(objects_msg) # traffic signals - # temporary support old auto msgs + traffic_signals_msg = ( + traffic_signals_msg if traffic_signals_msg else self.prev_traffic_signals_msg + ) if traffic_signals_msg: - if self.is_auto_traffic_signals: - traffic_signals_msg.header.stamp = timestamp - self.auto_traffic_signals_pub.publish(traffic_signals_msg) - else: - traffic_signals_msg.stamp = timestamp - self.traffic_signals_pub.publish(traffic_signals_msg) + traffic_signals_msg.stamp = timestamp_msg self.prev_traffic_signals_msg = traffic_signals_msg - elif self.prev_traffic_signals_msg: - if self.is_auto_traffic_signals: - self.prev_traffic_signals_msg.header.stamp = timestamp - self.auto_traffic_signals_pub.publish(self.prev_traffic_signals_msg) - else: - self.prev_traffic_signals_msg.stamp = timestamp - self.traffic_signals_pub.publish(self.prev_traffic_signals_msg) + self.traffic_signals_pub.publish(traffic_signals_msg) + self.stopwatch.toc("transform and publish") self.stopwatch.toc("total on_timer") - def find_nearest_ego_odom_by_observation(self, ego_pose): + def find_nearest_ego_odom_index(self, ego_pose): # nearest search with numpy format is much (~ x100) faster than regular for loop self_pose = np.array([ego_pose.position.x, ego_pose.position.y]) dists_squared = np.sum((self.rosbag_ego_odom_data_numpy - self_pose) ** 2, axis=1) nearest_idx = np.argmin(dists_squared) + return nearest_idx + + def find_nearby_ego_odom_indies(self, ego_poses: list, search_radius: float): + ego_poses_np = np.array([[pose.position.x, pose.position.y] for pose in ego_poses]) + dists_squared = np.sum( + (self.rosbag_ego_odom_data_numpy[:, None] - ego_poses_np) ** 2, axis=2 + ) + nearby_indices = np.where(np.any(dists_squared <= search_radius**2, axis=1))[0] + + return nearby_indices - return self.rosbag_ego_odom_data[nearest_idx] + def copy_message(self, msg): + self.stopwatch.tic("message deepcopy") + objects_msg_copied = pickle.loads(pickle.dumps(msg)) # this is x5 faster than deepcopy + self.stopwatch.toc("message deepcopy") + return objects_msg_copied + + def add_perception_noise( + self, objects_msg, update_rate=0.03, x_noise_std=0.1, y_noise_std=0.05 + ): + if self.memorized_original_objects_msg != objects_msg: + self.memorized_noised_objects_msg = self.memorized_original_objects_msg = objects_msg + + if np.random.rand() < update_rate: + self.stopwatch.tic("add noise") + self.memorized_noised_objects_msg = self.copy_message( + self.memorized_original_objects_msg + ) + for obj in self.memorized_noised_objects_msg.objects: + noise_x = np.random.normal(0, x_noise_std) + noise_y = np.random.normal(0, y_noise_std) + if self.args.detected_object or self.args.tracked_object: + obj.kinematics.pose_with_covariance.pose.position.x += noise_x + obj.kinematics.pose_with_covariance.pose.position.y += noise_y + else: + obj.kinematics.initial_pose_with_covariance.pose.position.x += noise_x + obj.kinematics.initial_pose_with_covariance.pose.position.y += noise_y + self.stopwatch.toc("add noise") + + return self.memorized_noised_objects_msg if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-b", "--bag", help="rosbag", default=None) + parser.add_argument( + "-n", + "--noise", + help="apply perception noise to the objects when publishing repeated messages", + action="store_true", + default=True, + ) parser.add_argument( "-d", "--detected-object", help="publish detected object", action="store_true" ) @@ -150,6 +298,21 @@ def find_nearest_ego_odom_by_observation(self, ego_pose): parser.add_argument( "-v", "--verbose", help="output debug data", action="store_true", default=False ) + parser.add_argument( + "-r", + "--search-radius", + help="the search radius for searching rosbag's ego odom messages around the nearest ego odom pose (default is 1.5 meters), if the search radius is set to 0, it will always publish the closest message, just as the old reproducer did.", + type=float, + default=1.5, + ) + parser.add_argument( + "-c", + "--reproduce-cool-down", + help="The cool down time for republishing published messages (default is 80.0 seconds), please make sure that it's greater than the ego's stopping time.", + type=float, + default=80.0, + ) + args = parser.parse_args() rclpy.init() diff --git a/planning/planning_debug_tools/scripts/perception_replayer/utils.py b/planning/planning_debug_tools/scripts/perception_replayer/utils.py index 7e8e0a18b4b7c..22b4296bdef94 100644 --- a/planning/planning_debug_tools/scripts/perception_replayer/utils.py +++ b/planning/planning_debug_tools/scripts/perception_replayer/utils.py @@ -26,6 +26,11 @@ from tf_transformations import quaternion_from_euler +def get_starting_time(uri: str): + info = rosbag2_py.Info().read_metadata(uri, "sqlite3") + return info.starting_time + + def get_rosbag_options(path, serialization_format="cdr"): storage_options = rosbag2_py.StorageOptions(uri=path, storage_id="sqlite3")