forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensorNet.h
163 lines (132 loc) · 3.91 KB
/
tensorNet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
/*
* http://github.com/dusty-nv/jetson-inference
*/
#ifndef __TENSOR_NET_H__
#define __TENSOR_NET_H__
#include "NvInfer.h"
#include "NvCaffeParser.h"
#include <sstream>
/**
* Abstract class for loading a tensor network with TensorRT.
* For example implementations, @see imageNet and @see detectNet
*/
class tensorNet
{
public:
/**
* Destory
*/
virtual ~tensorNet();
/**
* Load a new network instance
* @param prototxt File path to the deployable network prototxt
* @param model File path to the caffemodel
* @param mean File path to the mean value binary proto (NULL if none)
*/
bool LoadNetwork( const char* prototxt, const char* model, const char* mean=NULL,
const char* input_blob="data", const char* output_blob="prob");
/**
* Load a new network instance with multiple output layers
* @param prototxt File path to the deployable network prototxt
* @param model File path to the caffemodel
* @param mean File path to the mean value binary proto (NULL if none)
*/
bool LoadNetwork( const char* prototxt, const char* model, const char* mean,
const char* input_blob, const std::vector<std::string>& output_blobs);
/**
* Manually enable layer profiling times.
*/
void EnableProfiler();
/**
* Manually enable debug messages and synchronization.
*/
void EnableDebug();
/**
* Manually disable FP16 for debugging purposes.
*/
void DisableFP16();
/**
* Query for half-precision FP16 support.
*/
inline bool HasFP16() const { return mEnableFP16; }
protected:
/**
* Constructor.
*/
tensorNet();
/**
* Create and output an optimized network model
* @note this function is automatically used by LoadNetwork, but also can
* be used individually to perform the network operations offline.
* @param deployFile name for network prototxt
* @param modelFile name for model
* @param outputs network outputs
* @param maxBatchSize maximum batch size
* @param modelStream output model stream
*/
bool ProfileModel( const std::string& deployFile, const std::string& modelFile,
const std::vector<std::string>& outputs,
uint32_t maxBatchSize, std::ostream& modelStream);
/**
* Prefix used for tagging printed log output
*/
#define LOG_GIE "[GIE] "
/**
* Logger class for GIE info/warning/errors
*/
class Logger : public nvinfer1::ILogger
{
void log( Severity severity, const char* msg ) override
{
if( severity != Severity::kINFO /*|| mEnableDebug*/ )
printf(LOG_GIE "%s\n", msg);
}
} gLogger;
/**
* Profiler interface for measuring layer timings
*/
class Profiler : public nvinfer1::IProfiler
{
public:
Profiler() : timingAccumulator(0.0f) { }
virtual void reportLayerTime(const char* layerName, float ms)
{
printf(LOG_GIE "layer %s - %f ms\n", layerName, ms);
timingAccumulator += ms;
}
float timingAccumulator;
} gProfiler;
/**
* When profiling is enabled, end a profiling section and report timing statistics.
*/
inline void PROFILER_REPORT() { if(mEnableProfiler) { printf(LOG_GIE "layer network time - %f ms\n", gProfiler.timingAccumulator); gProfiler.timingAccumulator = 0.0f; } }
protected:
/* Member Variables */
std::string mPrototxtPath;
std::string mModelPath;
std::string mMeanPath;
std::string mInputBlobName;
nvinfer1::IRuntime* mInfer;
nvinfer1::ICudaEngine* mEngine;
nvinfer1::IExecutionContext* mContext;
uint32_t mWidth;
uint32_t mHeight;
uint32_t mInputSize;
float* mInputCPU;
float* mInputCUDA;
bool mEnableProfiler;
bool mEnableDebug;
bool mEnableFP16;
bool mOverride16;
nvinfer1::Dims3 mInputDims;
struct outputLayer
{
std::string name;
nvinfer1::Dims3 dims;
uint32_t size;
float* CPU;
float* CUDA;
};
std::vector<outputLayer> mOutputs;
};
#endif