-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot_dicod.py
65 lines (55 loc) · 2.3 KB
/
plot_dicod.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import os
import glob
import seaborn as sns
import matplotlib.pyplot as plt
from utils.plots import plot_scaling_n_jobs
from utils.plots import plot_compare_methods
PLOT_CONFIGS = {
'default': {
'size': (12, 6), 'sns_style': None, 'suffix': "",
'eps': 1e-4, 'legend': dict(fontsize=16, loc=3, ncol=1, frameon=False)
},
'presentation': {
'size': (12, 7), 'sns_style': 'darkgrid', 'suffix': "_seaborn",
'eps': 1e-4, 'legend': dict(fontsize=16, loc=3, ncol=1, frameon=False)
},
'small': {
'size': (6.4, 4.8), 'sns_style': 'darkgrid', 'suffix': "_small",
'eps': 1e-4, 'legend': dict(fontsize=16, loc=4, ncol=1, frameon=True)
},
'conference': {
'size': (12, 8), 'sns_style': None, 'suffix': "_conf",
'eps': 1e-4, 'legend': dict(fontsize=16, loc=3, ncol=1, frameon=False)
}
}
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser('Test for the DICOD algorithm')
parser.add_argument('--dir', type=str, default=None,
metavar='DIRECTORY', help='If present, save'
' the result in the given DIRECTORY')
parser.add_argument('--jobs', action='store_true',
help='Plot the runtime for different number '
'of cores')
parser.add_argument('--lmbd', action='store_true',
help='Plot the scaling relatively to lmbd.')
parser.add_argument('--met', action='store_true',
help='Plot the comparison of optimization algorithms')
parser.add_argument('--config', type=str, default='default',
help='Configuration of the plot.')
args = parser.parse_args()
# Load figure config
config = PLOT_CONFIGS[args.config]
if config['sns_style'] is not None:
sns.set_style(config['sns_style'])
plots = []
if args.met:
plots.append(("cost_curves*.pkl", plot_compare_methods))
if args.jobs:
plots.append(("runtimes_n_jobs_*.csv", plot_scaling_n_jobs))
for pattern, plot_func in plots:
data_file_pattern = os.path.join(args.dir, pattern)
data_files = glob.glob(data_file_pattern)
for data_file_name in data_files:
plot_func(data_file_name, args.dir, config)
plt.show()