-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbenchmarks.py
executable file
·985 lines (826 loc) · 31.4 KB
/
benchmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
#!/usr/bin/env python3
import io
import itertools
import math
import multiprocessing
import os
import os.path
import re
import subprocess
import sys
import tempfile
import time
import psycopg2
SEED = 42
KMEANS_SIZES = (
list(range(10_000, 100_000, 10_000)) +
list(range(100_000, 1_000_000, 100_000)) +
list(range(1_000_000, 10_000_000, 1_000_000)) +
[10_000_000]
)
KMEANS_SIZES_LARGE = (
list(range(12_000_000, 30_000_000, 2_000_000)) +
list(range(30_000_000, 100_000_000, 10_000_000)) +
list(range(100_000_000, 500_000_000, 100_000_000)) +
[500_000_000]
)
LINEAR_REGRESSION_SIZES = (
list(range(100_000_000, 1_000_000_000, 100_000_000)) +
[1_000_000_000]
)
WORDS_SIZES = (
list(range(100_000, 1_000_000, 100_000)) +
list(range(1_000_000, 10_000_000, 1_000_000)) +
list(range(10_000_000, 100_000_000, 10_000_000)) +
[100_000_000]
)
ARRAYS_SIZES = [s // 10 for s in WORDS_SIZES]
CREATE_POINTS_SQL = '''\
create table points_{size} (
x double precision not null,
y double precision not null,
cluster_id integer not null
);
insert into points_{size}
select x, y, "clusterId" from create_points({size});
'''
CREATE_XY_SQL = '''
create table xy_{size} (
x double precision not null,
y double precision not null
);
insert into xy_{size}
select x, y from create_regression_points(3.0, -2.0, 1.0, {size});
'''
CREATE_WORDS_SQL = '''\
create table words_{size} (
word text not null
);
insert into words_{size}
select word from create_words({size});
'''
CREATE_ARRAYS_SQL = '''\
create table array_values_{size} (
name text not null,
values text not null
);
insert into array_values_{size}
select name, values from create_arrays({size});
'''
UDO_KMEANS_SQL = '''\
with data as (
select x, y, cast(cluster_id as bigint) as payload
from {input_relation}
)
select "clusterId", count(*)
from udo_kmeans(table (select * from data))
group by "clusterId";
'''
KMEANS_UMBRA_SQL = '''\
with data as (
select x, y, cast(cluster_id as bigint) as payload
from {input_relation}
)
select cluster_id, count(*)
from umbra.kmeans(table (select * from data), 8 order by x, y)
group by cluster_id;
'''
UDO_REGRESSION_SQL = '''\
select * from udo_regression(table (select x, y from {input_relation}));
'''
REGRESSION_SQL = '''\
select regr_intercept(y, x), regr_slope(y, x) from {input_relation};
'''
REGRESSION_UMBRA_SQL = '''\
select * from umbra.linear_regression(table (select x, y from {input_relation}), 2);
'''
UDO_WORDS_SQL = '''\
select count(*)
from contains_database(table (select word from {input_relation}));
'''
WORDS_SQL = '''\
select count(*)
from {input_relation}
where word ilike '%database%';
'''
UDO_ARRAYS_SQL = '''\
select name, count(*)
from split_arrays(table (select name, values from {input_relation}))
where value between 1000 and 2000
group by name
order by name;
'''
ARRAYS_RECURSIVE_SQL = '''\
with recursive split_arrays(name, value, tail) as (
select c.name, NULL, c.values as tail from {input_relation} c
union all
select
s.name,
case
when comma = 0 then s.tail
else left(s.tail, comma - 1)
end as value,
case
when comma = 0 then ''
else right(s.tail, -comma)
end as tail
from (
select s.*, position(',' in s.tail) as comma
from split_arrays s
) s
where s.tail != ''
),
split_values as (
select name,
case when value similar to '[0-9]+'
then cast(value as bigint)
else null end as value
from split_arrays
)
select name, count(*)
from split_values
where value between 1000 and 2000
group by name
order by name;
'''
ARRAYS_POSTGRES_SQL = '''\
with unnest_values(name, value) as (
select name, string_to_table(values, ',') as value
from {input_relation}
),
split_values as (
select name, cast(value as bigint) as value
from unnest_values
where
value != '' and
value similar to '[0-9]+'
)
select name, count(*)
from split_values
where value between 1000 and 2000
group by name
order by name;
'''
ARRAYS_DUCKDB_SQL = '''\
with unnest_values(name, value) as (
select name, unnest(string_split(values, ',')) as value
from {input_relation}
),
split_values as (
select name, cast(value as bigint) as value
from unnest_values
where
value != '' and
value similar to '[0-9]+'
)
select name, count(*)
from split_values
where value between 1000 and 2000
group by name
order by name;
'''
# List of (funcname, args, classname)
UDO_FUNCTIONS = [
('count_lifestyle', 'table', 'CountLifestyle'),
('identity', 'table', 'Identity'),
('create_points', 'bigint', 'CreatePoints'),
('create_regression_points', 'double precision, double precision, double precision, bigint', 'CreateRegressionPoints'),
('create_words', 'bigint', 'CreateWords'),
('create_arrays', 'bigint', 'CreateArrays'),
('contains_database', 'table', 'ContainsDatabase'),
('split_arrays', 'table', 'SplitArrays'),
('udo_kmeans', 'table', 'KMeans'),
('udo_regression', 'table', 'LinearRegression'),
]
def generate_query(funcname, args, classname):
with open(f'{funcname}.cpp') as f:
code = f.read()
return (
f'''create function {funcname}({args}) returns table language 'UDO-C++' as $$
{code}
$$, '{classname}';
''')
class CoresInfo:
def __init__(self):
# The current NUMA node id
self._numa_node = None
# The id of the current physical core on the NUMA node
self._core = None
# The id of the current unique logical core id which belongs to the current physical core
self._thread = None
# Maps NUMA node ids to physical core ids and physical core ids to thread ids
self.threads = {}
self._collect()
def _update_threads(self):
if self._numa_node is not None and self._core is not None and self._thread is not None:
numa_node = self.threads.setdefault(self._numa_node, {})
numa_node.setdefault(self._core, []).append(self._thread)
self._numa_node = None
self._core = None
self._thread = None
def _collect(self, cpuinfo_filename = '/proc/cpuinfo'):
with open(cpuinfo_filename, 'r') as cpuinfo:
for line in cpuinfo:
line = line.strip()
if not line:
# Found an empty line which separates threads, update map
self._update_threads()
continue
name, _, value = line.partition(':')
name = name.strip()
value = value.strip()
if name == 'physical id':
self._numa_node = int(value)
elif name == 'core id':
self._core = int(value)
elif name == 'processor':
self._thread = int(value)
def get_num_threads(self):
num_threads = 0
for cores in self.threads.values():
for threads in cores.values():
num_threads += len(threads)
return num_threads
def pick_threads(self, num_threads):
first_node_cores = next(iter(self.threads.values()))
num_cores_per_node = len(first_node_cores)
if num_threads <= num_cores_per_node:
# We can fit all threads into the same NUMA node without SMT
picked_threads = []
for threads in itertools.islice(first_node_cores.values(), num_threads):
picked_threads.append(threads[0])
picked_threads.sort()
return picked_threads
num_nodes = len(self.threads)
num_picked_threads_per_node = num_threads // num_nodes
# Distribute the remainder onto the first nodes
node_thread_counts = list(itertools.chain(
itertools.repeat(num_picked_threads_per_node + 1, num_threads % num_nodes),
itertools.repeat(num_picked_threads_per_node, num_nodes - (num_threads % num_nodes))
))
if num_threads <= num_cores_per_node * num_nodes:
# We need more than one NUMA node but still don't need SMT
picked_threads = []
for node_cores, node_num_threads in zip(self.threads.values(), node_thread_counts):
for threads in itertools.islice(node_cores.values(), node_num_threads):
picked_threads.append(threads[0])
picked_threads.sort()
return picked_threads
# We need to use SMT
picked_threads = []
for node_cores, node_num_threads in zip(self.threads.values(), node_thread_counts):
node_cores_threads = list(node_cores.values())
for i in range(node_num_threads):
picked_threads.append(node_cores_threads[i % num_cores_per_node][i // num_cores_per_node])
picked_threads.sort()
return picked_threads
def check_umbra(proc, wait=False):
if wait:
if proc.wait() != 0:
raise RuntimeError(f'Umbra process exited with error code {proc.returncode}')
else:
if proc.poll() is not None:
raise RuntimeError(f'Umbra process exited unexpectedly with return code {proc.returncode}')
def _start_sql_proc(args, **kwargs):
tmpfile = tempfile.TemporaryFile('w', encoding='utf8')
# We pass this file via fd to the umbra process, so create a new fd that
# the umbra process will use and make it inheritable.
umbra_tmpfile_fd = os.dup(tmpfile.fileno())
os.set_inheritable(umbra_tmpfile_fd, True)
env = os.environ.copy()
env.update({
'CODEGENRANDOMSEED': str(SEED),
'KMEANSFIXEDITERATIONS': '10',
})
popen_kwargs = {
'stdin': subprocess.PIPE,
'stdout': subprocess.PIPE,
'env': env,
'encoding': 'utf8',
'close_fds': True,
'pass_fds': [umbra_tmpfile_fd],
}
popen_kwargs.update(kwargs)
sql_proc = subprocess.Popen(args, **popen_kwargs)
os.close(umbra_tmpfile_fd)
check_umbra(sql_proc)
return sql_proc, tmpfile, umbra_tmpfile_fd
def create_umbra_db(umbra_sql, dbfile):
sql_proc, tmpfile, umbra_tmpfile_fd = _start_sql_proc([umbra_sql, '-createdb', dbfile])
sql_proc.stdin.write('\\o -\n')
sql_proc.stdin.flush()
def wait_umbra():
sql_proc.stdin.write('select 1;\n')
sql_proc.stdin.flush();
sql_proc.stdout.readline();
check_umbra(sql_proc)
for funcname, args, classname in UDO_FUNCTIONS:
print(f'Create function {funcname}')
query = generate_query(funcname, args, classname)
sql_proc.stdin.write(query)
sql_proc.stdin.flush()
wait_umbra()
for size in KMEANS_SIZES + KMEANS_SIZES_LARGE:
print(f'Create points_{size}')
sql_proc.stdin.write(CREATE_POINTS_SQL.format(size=size))
sql_proc.stdin.flush()
wait_umbra()
for size in LINEAR_REGRESSION_SIZES:
print(f'Create xy_{size}')
sql_proc.stdin.write(CREATE_XY_SQL.format(size=size))
sql_proc.stdin.flush()
wait_umbra()
for size in WORDS_SIZES:
print(f'Create words_{size}')
sql_proc.stdin.write(CREATE_WORDS_SQL.format(size=size))
sql_proc.stdin.flush()
wait_umbra()
for size in ARRAYS_SIZES:
print(f'Create array_values_{size}')
sql_proc.stdin.write(CREATE_ARRAYS_SQL.format(size=size))
sql_proc.stdin.flush()
wait_umbra()
sql_proc.stdin.close()
check_umbra(sql_proc, True)
def create_postgres_db(conn):
cursor = conn.cursor()
for funcname, args, classname in UDO_FUNCTIONS:
print(f'Create function {funcname}')
query = generate_query(funcname, args, classname)
cursor.execute(query)
conn.commit()
for size in KMEANS_SIZES:
print(f'Create points_{size}')
cursor.execute(CREATE_POINTS_SQL.format(size=size))
conn.commit()
for size in LINEAR_REGRESSION_SIZES:
print(f'Create xy_{size}')
cursor.execute(CREATE_XY_SQL.format(size=size))
conn.commit()
for size in WORDS_SIZES:
print(f'Create words_{size}')
cursor.execute(CREATE_WORDS_SQL.format(size=size))
conn.commit()
for size in ARRAYS_SIZES:
print(f'Create array_values_{size}')
cursor.execute(CREATE_ARRAYS_SQL.format(size=size))
conn.commit()
def run_umbra_benchmark(umbra_sql, dbfile, name, sizes, get_query, umbra_settings, **popen_kwargs):
sql_proc, tmpfile, umbra_tmpfile_fd = _start_sql_proc([umbra_sql, dbfile], **popen_kwargs)
sql_proc.stdin.write('\\o -\n')
sql_proc.stdin.flush()
for setting_name, value in umbra_settings.items():
sql_proc.stdin.write(f'''set debug.{setting_name} = '{value}';\n''');
sql_proc.stdin.flush()
check_umbra(sql_proc)
for size in sizes:
# Run query once without measurement to warm up system
query = get_query(size)
sql_proc.stdin.write(f'\\record off\n')
sql_proc.stdin.write(query)
sql_proc.stdin.flush()
sql_proc.stdout.readline()
check_umbra(sql_proc)
sql_proc.stdin.write(f'\\record benchmarks.log {name}_{size}\n')
sql_proc.stdin.flush()
for i in range(10):
print(f'Run umbra_{name}_{size} iteration {i+1}')
sql_proc.stdin.write(query)
sql_proc.stdin.flush()
sql_proc.stdout.readline()
check_umbra(sql_proc)
sql_proc.stdin.close()
check_umbra(sql_proc, True)
def run_postgres_benchmark(conn, name, sizes, get_query):
cursor = conn.cursor()
if not os.path.exists('postgres-benchmarks.log'):
with open('postgres-benchmarks.log', 'w') as log:
log.write('query,num_tuples,planning_ms,execution_ms\n')
for size in sizes:
# Run query once without measurement to warm up system
query = 'explain analyze ' + get_query(size)
cursor.execute(query)
cursor.fetchall()
times = []
for i in range(10):
print(f'Run postgres_{name}_{size} iteration {i+1}')
cursor.execute(query)
planning = None
execution = None
for (row,) in cursor.fetchall():
if row.startswith('Planning Time: '):
row = row[len('Planning Time: '):]
assert row[-3:] == " ms"
planning = row[:-3]
elif row.startswith('Execution Time: '):
row = row[len('Execution Time: '):]
assert row[-3:] == " ms"
execution = row[:-3]
assert planning is not None
assert execution is not None
times.append((planning, execution))
with open('postgres-benchmarks.log', 'a') as log:
for planning, execution in times:
log.write(f'{name},{size},{planning},{execution}\n')
def run_standalone_benchmark(umbra_sql, dbfile, standalone_exe, name, sizes, get_relation):
sql_proc, tmpfile, umbra_tmpfile_fd = _start_sql_proc([umbra_sql, dbfile])
sql_proc.stdin.write('\\o -\n')
sql_proc.stdin.flush()
if not os.path.exists('standalone-benchmarks.log'):
with open('standalone-benchmarks.log', 'w') as log:
log.write('name,num_tuples,time_ns\n')
for size in sizes:
relation = get_relation(size)
print(f'Run standalone_{name}_{size}')
with tempfile.NamedTemporaryFile() as data_file:
sql_proc.stdin.write(f'''\
copy {relation} to '{data_file.name}' csv header;
''')
sql_proc.stdin.write('select 1;\n')
sql_proc.stdin.flush()
sql_proc.stdout.readline()
check_umbra(sql_proc)
process_kwargs = {
'stdout': subprocess.PIPE,
'encoding': 'utf8',
'close_fds': True,
'check': True,
}
proc = subprocess.run([standalone_exe, '--benchmark', data_file.name], **process_kwargs)
with open('standalone-benchmarks.log', 'a') as log:
for line in proc.stdout.splitlines():
log.write(f'{name},{size},{line}\n')
sql_proc.stdin.close()
check_umbra(sql_proc, True)
def _run_spark(spark_submit, spark_class, *args):
process_kwargs = {
'capture_output': True,
'encoding': 'utf8',
'close_fds': True,
'cwd': './spark',
'check': True,
}
proc = subprocess.run(['./run-spark.sh', spark_submit, spark_class, *args], **process_kwargs)
return proc.stdout
SPARK_TIME_RE = re.compile('Time taken: ([0-9]+) ms')
def run_spark_benchmark(umbra_sql, dbfile, spark_submit, name, spark_class, get_relation, sizes):
sql_proc, tmpfile, umbra_tmpfile_fd = _start_sql_proc([umbra_sql, dbfile])
sql_proc.stdin.write('\\o -\n')
sql_proc.stdin.flush()
if not os.path.exists('spark-benchmarks.log'):
with open('spark-benchmarks.log', 'w') as log:
log.write('name,num_tuples,time_in_ms\n')
with open('spark-benchmarks.log', 'a') as log:
for size in sizes:
relation = get_relation(size)
print(f'Run spark_{name}_{size}')
with tempfile.NamedTemporaryFile() as data_file:
sql_proc.stdin.write(f'''\
copy {relation} to '{data_file.name}' csv header;
''')
sql_proc.stdin.write('select 1;\n')
sql_proc.stdin.flush()
sql_proc.stdout.readline()
check_umbra(sql_proc)
output = _run_spark(spark_submit, spark_class, data_file.name)
for line in output.splitlines():
match = SPARK_TIME_RE.search(line)
time_ms = match.group(1)
log.write(f'{name},{size},{time_ms}\n')
sql_proc.stdin.close()
check_umbra(sql_proc, True)
def _duckdb_benchmark(data_file, name, size, relation, query):
import duckdb
import pandas as pd
num_threads = os.sched_getaffinity(0)
con = duckdb.connect(config={'threads': len(num_threads)})
if 'words' in relation:
words = pd.read_csv(data_file, sep=',', dtype='string')
con.register(relation, words)
elif 'array_values' in relation:
array_values_df = pd.read_csv(data_file, sep=',', dtype='string')
con.register(relation, array_values_df)
elif 'xy' in relation:
xy_df = pd.read_csv(data_file, sep=',', dtype='float64')
con.register(relation, xy_df)
else:
raise ValueError(f'unknown relation type of {relation}')
# Run query once without measurement to warm up system
con.execute(query)
con.fetchall()
times = []
for _ in range(10):
t_begin = time.perf_counter()
con.execute(query)
con.fetchall()
t_end = time.perf_counter()
times.append(t_end - t_begin)
if not os.path.exists('duckdb-benchmarks.log'):
with open('duckdb-benchmarks.log', 'w') as log:
log.write('query,num_tuples,time_s\n')
with open('duckdb-benchmarks.log', 'a') as log:
for t in times:
log.write(f'{name},{size},{t}\n')
def can_import_duckb():
import importlib
try:
importlib.import_module('duckdb')
importlib.import_module('pandas')
except ModuleNotFoundError:
return False
return True
def run_duckdb_benchmark(umbra_sql, dbfile, name, get_relation, get_query, sizes):
sql_proc, tmpfile, umbra_tmpfile_fd = _start_sql_proc([umbra_sql, dbfile])
sql_proc.stdin.write('\\o -\n')
sql_proc.stdin.flush()
for size in sizes:
relation = get_relation(size)
print(f'Run duckdb_{name}_{size}')
with tempfile.NamedTemporaryFile() as data_file:
sql_proc.stdin.write(f'''\
copy {relation} to '{data_file.name}' csv header;
''')
sql_proc.stdin.write('select 1;\n')
sql_proc.stdin.flush()
sql_proc.stdout.readline()
check_umbra(sql_proc)
query = get_query(size)
proc = multiprocessing.Process(target=_duckdb_benchmark, args=(data_file.name, name, size, relation, query))
proc.start()
proc.join()
if proc.exitcode != 0:
raise RuntimeError(f'duckdb process returned error code {proc.exitcode}')
sql_proc.stdin.close()
check_umbra(sql_proc, True)
if __name__ == '__main__':
import argparse
import sys
if len(sys.argv) == 2 and sys.argv[1] == '--generate-queries':
for (funcname, args, classname) in UDO_FUNCTIONS:
query = generate_query(funcname, args, classname)
with open(f'{funcname}.sql', 'w') as f:
f.write(query)
sys.exit(0)
ALL_BENCHMARKS = ['kmeans', 'regression', 'words', 'arrays', 'spark']
ALL_SYSTEMS = ['Umbra', 'Postgres', 'Spark', 'DuckDB', 'Standalone']
parser = argparse.ArgumentParser(description='Run UDO benchmarks')
parser.add_argument('--createdb', help='Create the benchmark database', action='store_true')
parser.add_argument('--umbra-sql', help='Path to the Umbra sql binary')
parser.add_argument('--umbra-dbfile', help='Path to the Umbra database file')
parser.add_argument('--postgres-connection', help='The postgres connection string')
parser.add_argument('--spark-home', help='The path to the Spark install directory, overrides SPARK_HOME env variable')
parser.add_argument('--systems', help='Run the benchmarks only on the specified systems (comma separated list)')
parser.add_argument('benchmarks', help='Which benchmarks to run', nargs='*')
args = parser.parse_args()
if args.benchmarks:
benchmarks = set(args.benchmarks)
else:
benchmarks = set(ALL_BENCHMARKS)
systems_lower = set(s.lower() for s in ALL_SYSTEMS)
if args.systems is None:
selected_systems = systems_lower
else:
selected_systems = set()
for system in args.systems.split(','):
if system.lower() not in systems_lower:
print(f'Unknown system {system}', file=sys.stderr)
print('Possible values: ' + ', '.join(ALL_SYSTEMS), file=sys.stderr)
sys.exit(2)
selected_systems.add(system)
run_umbra = False
run_postgres = False
run_spark = False
run_duckdb = False
run_standalone = False
if bool(args.umbra_sql) != bool(args.umbra_dbfile):
print("--umbra-sql and --umbra-dbfile need to be specified together", file=sys.stderr)
sys.exit(2)
if args.umbra_sql:
run_umbra = True
if args.postgres_connection is not None:
postgres_conn = psycopg2.connect(args.postgres_connection)
run_postgres = True
if run_umbra:
# The duckdb and spark and standalone benchmarks get their inputs from
# the umbra process, so we need umbra.
if can_import_duckb():
run_duckdb = True
if os.path.exists('./kmeans-standalone'):
run_standalone = True
spark_home = args.spark_home
if not spark_home:
spark_home = os.environ.get('SPARK_HOME')
if spark_home:
run_spark = True
if 'umbra' not in selected_systems:
run_umbra = False
if 'postgres' not in selected_systems:
run_postgres = False
if 'spark' not in selected_systems:
run_spark = False
if 'duckdb' not in selected_systems:
run_duckdb = False
if 'standalone' not in selected_systems:
run_standalone = False
if args.createdb:
if run_umbra:
create_umbra_db(args.umbra_sql, args.umbra_dbfile)
if run_postgres:
create_postgres_db(postgres_conn)
if run_postgres:
postgres_conn.set_session(readonly=True)
if 'kmeans' in benchmarks:
if run_umbra:
def run_kmeans(name, query, compilationmode):
return run_umbra_benchmark(
args.umbra_sql,
args.umbra_dbfile,
name,
KMEANS_SIZES + KMEANS_SIZES_LARGE,
lambda s: query.format(input_relation=f'points_{s}'),
{'compilationmode': compilationmode}
)
run_kmeans('udo_kmeans', UDO_KMEANS_SQL, 'o')
run_kmeans('kmeans', KMEANS_UMBRA_SQL, 'o')
cores_info = CoresInfo()
def run_kmeans_threads(name, query):
for num_threads in range(2, cores_info.get_num_threads() + 1, 2):
thread_list = cores_info.pick_threads(num_threads)
run_umbra_benchmark(
args.umbra_sql,
args.umbra_dbfile,
name,
[KMEANS_SIZES_LARGE[-1]],
lambda s: query.format(input_relation=f'points_{s}'),
{
'compilationmode': 'o',
'parallel': str(num_threads),
},
preexec_fn = lambda: os.sched_setaffinity(0, thread_list)
)
run_kmeans_threads('udo_kmeans_threads', UDO_KMEANS_SQL)
run_kmeans_threads('kmeans_threads', KMEANS_UMBRA_SQL)
if run_postgres:
def run_kmeans(name, query):
return run_postgres_benchmark(
postgres_conn,
name,
KMEANS_SIZES,
lambda s: query.format(input_relation=f'points_{s}')
)
run_kmeans('udo_kmeans', UDO_KMEANS_SQL)
if run_standalone:
run_standalone_benchmark(
args.umbra_sql,
args.umbra_dbfile,
'./kmeans-standalone',
'udo_kmeans',
KMEANS_SIZES,
lambda s: f'points_{s}'
)
if run_spark:
run_spark_benchmark(
args.umbra_sql,
args.umbra_dbfile,
os.path.join(spark_home, 'bin', 'spark-submit'),
'kmeans',
'UDOKMeans',
lambda s: f'points_{s}',
KMEANS_SIZES
)
if 'regression' in benchmarks:
if run_umbra:
def run_regression(name, query, compilationmode):
return run_umbra_benchmark(
args.umbra_sql,
args.umbra_dbfile,
name,
LINEAR_REGRESSION_SIZES,
lambda s: query.format(input_relation=f'xy_{s}'),
{'compilationmode': compilationmode}
)
run_regression('udo_regression', UDO_REGRESSION_SQL, 'o')
run_regression('regression', REGRESSION_SQL, 'o')
run_regression('regression_2', REGRESSION_UMBRA_SQL, 'o')
cores_info = CoresInfo()
def run_regression_threads(name, query):
for num_threads in range(2, cores_info.get_num_threads() + 1, 2):
thread_list = cores_info.pick_threads(num_threads)
run_umbra_benchmark(
args.umbra_sql,
args.umbra_dbfile,
name,
[LINEAR_REGRESSION_SIZES[-1]],
lambda s: query.format(input_relation=f'xy_{s}'),
{
'compilationmode': 'o',
'parallel': str(num_threads),
},
preexec_fn = lambda: os.sched_setaffinity(0, thread_list)
)
run_regression_threads('udo_regression_threads', UDO_REGRESSION_SQL)
run_regression_threads('regression_threads', REGRESSION_SQL)
run_regression_threads('regression_2_threads', REGRESSION_UMBRA_SQL)
if run_postgres:
def run_regression(name, query):
return run_postgres_benchmark(
postgres_conn,
name,
LINEAR_REGRESSION_SIZES,
lambda s: query.format(input_relation=f'xy_{s}')
)
run_regression('udo_regression', UDO_REGRESSION_SQL)
run_regression('regression', REGRESSION_SQL)
if run_duckdb:
run_duckdb_benchmark(
args.umbra_sql,
args.umbra_dbfile,
'regression',
lambda s: f'xy_{s}',
lambda s: REGRESSION_SQL.format(input_relation=f'xy_{s}'),
LINEAR_REGRESSION_SIZES
)
if run_standalone:
run_standalone_benchmark(
args.umbra_sql,
args.umbra_dbfile,
'./regression-standalone',
'udo_regression',
LINEAR_REGRESSION_SIZES,
lambda s: f'xy_{s}'
)
if run_spark:
run_spark_benchmark(
args.umbra_sql,
args.umbra_dbfile,
os.path.join(spark_home, 'bin', 'spark-submit'),
'regression_2',
'UDOLinearRegression',
lambda s: f'xy_{s}',
LINEAR_REGRESSION_SIZES
)
if 'words' in benchmarks:
if run_umbra:
def run_words(name, query, compilationmode):
return run_umbra_benchmark(
args.umbra_sql,
args.umbra_dbfile,
name,
WORDS_SIZES,
lambda s: query.format(input_relation=f'words_{s}'),
{'compilationmode': compilationmode}
)
run_words('udo_words', UDO_WORDS_SQL, 'o')
run_words('words', WORDS_SQL, 'o')
if run_duckdb:
run_duckdb_benchmark(
args.umbra_sql,
args.umbra_dbfile,
'words',
lambda s: f'words_{s}',
lambda s: WORDS_SQL.format(input_relation=f'words_{s}'),
WORDS_SIZES
)
if run_postgres:
def run_words(name, query):
return run_postgres_benchmark(
postgres_conn,
name,
WORDS_SIZES,
lambda s: query.format(input_relation=f'words_{s}')
)
run_words('udo_words', UDO_WORDS_SQL)
run_words('words', WORDS_SQL)
if 'arrays' in benchmarks:
if run_umbra:
def run_arrays(name, query, compilationmode):
return run_umbra_benchmark(
args.umbra_sql,
args.umbra_dbfile,
name,
ARRAYS_SIZES,
lambda s: query.format(input_relation=f'array_values_{s}'),
{'compilationmode': compilationmode}
)
run_arrays('udo_arrays', UDO_ARRAYS_SQL, 'o')
run_arrays('arrays_recursive', ARRAYS_RECURSIVE_SQL, 'o')
if run_duckdb:
run_duckdb_benchmark(
args.umbra_sql,
args.umbra_dbfile,
'arrays_unnest',
lambda s: f'array_values_{s}',
lambda s: ARRAYS_DUCKDB_SQL.format(input_relation=f'array_values_{s}'),
ARRAYS_SIZES
)
if run_postgres:
def run_arrays(name, query):
return run_postgres_benchmark(
postgres_conn,
name,
ARRAYS_SIZES,
lambda s: query.format(input_relation=f'array_values_{s}')
)
run_arrays('udo_arrays', UDO_ARRAYS_SQL)
run_arrays('arrays_recursive', ARRAYS_RECURSIVE_SQL)
run_arrays('arrays_unnest', ARRAYS_POSTGRES_SQL)