forked from data61/cuda-fixnum
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathwarp_fixnum.cu
590 lines (511 loc) · 18.3 KB
/
warp_fixnum.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
#pragma once
#include "slot_layout.cu"
#include "word_fixnum.cu"
namespace cuFIXNUM {
/*
* This is an archetypal implementation of a fixnum instruction
* set. It defines the de facto interface for such implementations.
*
* All methods are defined for the device. It is someone else's
* problem to get the data onto the device.
*/
template< int BYTES_, typename digit_ = u32_fixnum >
class warp_fixnum {
public:
// NB: Language convention: Call something a 'digit' when it is constant
// across the slot, and call it a 'fixnum' when it can vary between lanes in
// the slot. Similarly, prefix a function call with 'digit::' when the
// arguments are interpreted component-wise, and with 'fixnum::' when
// they're interpreted "across the slot".
typedef digit_ digit;
typedef warp_fixnum fixnum;
static constexpr int BYTES = BYTES_;
static constexpr int BITS = 8 * BYTES;
static constexpr int SLOT_WIDTH = BYTES / digit::BYTES;
typedef slot_layout<digit, SLOT_WIDTH> layout;
static_assert(BYTES > 0,
"Fixnum bytes must be positive.");
static_assert(BYTES % digit::BYTES == 0,
"Fixnum digit size must divide fixnum bytes.");
// TODO: Specialise std::is_integral for fixnum_u32?
//static_assert(std::is_integral< digit >::value,
// "digit must be integral.");
private:
digit x;
// TODO: These should be private
public:
__device__ __forceinline__
operator digit () const { return x; }
__device__ __forceinline__
operator digit &() { return x; }
public:
__device__ __forceinline__
warp_fixnum() { }
// TODO: Shouldn't this be equivalent to the digit_to_fixnum() function
// below?
__device__ __forceinline__
warp_fixnum(digit z) : x(z) { }
/***************************
* Representation functions.
*/
/*
* Set r using bytes, interpreting bytes as a base-256 unsigned
* integer. Return the number of bytes used. If nbytes >
* BYTES, then the last nbytes - BYTES are ignored.
*
* NB: Normally we would expect from_bytes to be exclusively a
* device function, but it's the same for the host, so we leave it
* in.
*/
__host__ __device__ static int from_bytes(uint8_t *r, const uint8_t *bytes, int nbytes) {
int n = min(nbytes, BYTES);
memcpy(r, bytes, n);
memset(r + n, 0, BYTES - n);
return n;
}
/*
* Set bytes using r, converting r to a base-256 unsigned
* integer. Return the number of bytes written. If nbytes <
* BYTES, then the last BYTES - nbytes are ignored.
*
* NB: Normally we would expect from_bytes to be exclusively a
* device function, but it's the same for the host, so we leave it
* in.
*/
__host__ __device__ static int to_bytes(uint8_t *bytes, int nbytes, const uint8_t *r) {
int n = min(nbytes, BYTES);
memcpy(bytes, r, n);
return n;
}
/*
* Return digit at index idx.
*/
__device__ static digit get(fixnum var, int idx) {
return layout::shfl(var, idx);
}
/*
* Set var digit at index idx to be x.
*/
__device__ static void set(fixnum &var, digit x, int idx) {
var = (layout::laneIdx() == idx) ? (fixnum)x : var;
}
/*
* Return digit in most significant place. Might be zero.
*/
__device__ static digit top_digit(fixnum var) {
return layout::shfl(var, layout::toplaneIdx);
}
/*
* Return digit in the least significant place. Might be zero.
*
* TODO: Not clear how to interpret this function with more exotic fixnum
* implementations such as RNS.
*/
__device__ static digit bottom_digit(fixnum var) {
return layout::shfl(var, 0);
}
/***********************
* Arithmetic functions.
*/
// TODO: Handle carry in
// TODO: A more consistent syntax might be
// fixnum add(fixnum a, fixnum b)
// fixnum add_cc(fixnum a, fixnum b, int &cy_out)
// fixnum addc(fixnum a, fixnum b, int cy_in)
// fixnum addc_cc(fixnum a, fixnum b, int cy_in, int &cy_out)
__device__ static void add_cy(fixnum &r, digit &cy_hi, fixnum a, fixnum b) {
digit cy;
digit::add_cy(r, cy, a, b);
// r propagates carries iff r = FIXNUM_MAX
digit r_cy = effective_carries(cy_hi, digit::is_max(r), cy);
digit::add(r, r, r_cy);
}
__device__ static void add(fixnum &r, fixnum a, fixnum b) {
digit cy;
add_cy(r, cy, a, b);
}
// TODO: Handle borrow in
__device__ static void sub_br(fixnum &r, digit &br_hi, fixnum a, fixnum b) {
digit br;
digit::sub_br(r, br, a, b);
// r propagates borrows iff r = FIXNUM_MIN
digit r_br = effective_carries(br_hi, digit::is_min(r), br);
digit::sub(r, r, r_br);
}
__device__ static void sub(fixnum &r, fixnum a, fixnum b) {
digit br;
sub_br(r, br, a, b);
}
__device__ static fixnum zero() {
return digit::zero();
}
__device__ static fixnum one() {
return digit(layout::laneIdx() == 0);
}
__device__ static fixnum two() {
return digit(layout::laneIdx() == 0 ? 2 : 0);
}
__device__ static int is_zero(fixnum a) {
return nonzero_mask(a) == 0;
}
__device__ static digit incr_cy(fixnum &r) {
digit cy;
add_cy(r, cy, r, one());
return cy;
}
__device__ static digit decr_br(fixnum &r) {
digit br;
sub_br(r, br, r, one());
return br;
}
__device__ static void neg(fixnum &r, fixnum a) {
sub(r, zero(), a);
}
/*
* r = a * u, where a is interpreted as a single word, and u a
* full fixnum. a should be constant across the slot for the
* result to make sense.
*
* TODO: Can this be refactored with mad_cy?
* TODO: Come up with a better name for this function. It's
* scalar multiplication in the vspace of polynomials...
*/
__device__ static digit mul_digit(fixnum &r, digit a, fixnum u) {
fixnum hi, lo;
digit cy, cy_hi;
digit::mul_wide(hi, lo, a, u);
cy_hi = top_digit(hi);
hi = layout::shfl_up0(hi, 1);
add_cy(lo, cy, lo, hi);
return cy_hi + cy;
}
/*
* r = lo_half(a * b)
*
* The "lo_half" is the product modulo 2^(8*BYTES),
* i.e. the same size as the inputs.
*/
__device__ static void mul_lo(fixnum &r, fixnum a, fixnum b) {
// TODO: Implement specific mul_lo function.
digit cy = digit::zero();
r = zero();
for (int i = layout::WIDTH - 1; i >= 0; --i) {
digit aa = layout::shfl(a, i);
digit::mad_hi_cy(r, cy, aa, b, r);
// TODO: Could use rotate here, which is slightly
// cheaper than shfl_up0...
r = layout::shfl_up0(r, 1);
cy = layout::shfl_up0(cy, 1);
digit::mad_lo_cy(r, cy, aa, b, r);
}
cy = layout::shfl_up0(cy, 1);
add(r, r, cy);
}
/*
* (s, r) = a * b
*
* r is the "lo half" (see mul_lo above) and s is the
* corresponding "hi half".
*/
__device__ static void mul_wide(fixnum &ss, fixnum &rr, fixnum a, fixnum b) {
int L = layout::laneIdx();
fixnum r, s;
r = fixnum::zero();
s = fixnum::zero();
digit cy = digit::zero();
fixnum ai = get(a, 0);
digit::mul_lo(s, ai, b);
r = L == 0 ? s : r; // r[0] = s[0];
s = layout::shfl_down0(s, 1);
digit::mad_hi_cy(s, cy, ai, b, s);
for (int i = 1; i < layout::WIDTH; ++i) {
fixnum ai = get(a, i);
digit::mad_lo_cc(s, ai, b, s);
fixnum s0 = get(s, 0);
r = (L == i) ? s0 : r; // r[i] = s[0]
s = layout::shfl_down0(s, 1);
// TODO: Investigate whether deferring this carry resolution until
// after the loop improves performance much.
digit::addc_cc(s, s, cy); // add carry from prev digit
digit::addc(cy, 0, 0); // cy = CC.CF
digit::mad_hi_cy(s, cy, ai, b, s);
}
cy = layout::shfl_up0(cy, 1);
add(s, s, cy);
rr = r;
ss = s;
}
__device__ static void mul_hi(fixnum &s, fixnum a, fixnum b) {
// TODO: Implement specific mul_hi function.
fixnum r;
mul_wide(s, r, a, b);
}
/*
* Adapt "rediagonalisation" trick described in Figure 4 of Ozturk,
* Guilford, Gopal (2013) "Large Integer Squaring on Intel
* Architecture Processors".
*
* TODO: This function is only definitively faster than mul_wide when WIDTH
* is 32 (but in that case it's ~50% faster).
*/
__device__ static void
sqr_wide_(fixnum &ss, fixnum &rr, fixnum a)
{
constexpr int W = layout::WIDTH;
int L = layout::laneIdx();
fixnum r, s;
r = fixnum::zero();
s = fixnum::zero();
fixnum diag_lo = fixnum::zero();
digit cy = digit::zero();
for (int i = 0; i < W / 2; ++i) {
fixnum a1, a2, s0;
int lpi = L + i;
// TODO: Explain how on Earth these formulae pick out the correct
// terms for the squaring.
// NB: Could achieve the same with iterative shuffle's; the expressions
// would be clearer, but the shuffles would (presumably) be more expensive.
a1 = get(a, lpi < W ? i : lpi - W/2);
a2 = get(a, lpi < W ? lpi : W/2 + i);
assert(L != 0 || digit::cmp(a1,a2)==0); // a1 = a2 when L == 0
fixnum hi, lo;
digit::mul_wide(hi, lo, a1, a2);
// TODO: These two (almost identical) blocks cause lots of pipeline
// stalls; need to find a way to reduce their data dependencies.
digit::add_cyio(s, cy, s, lo);
lo = get(lo, 0);
diag_lo = (L == 2*i) ? lo : diag_lo;
s0 = get(s, 0);
r = (L == 2*i) ? s0 : r; // r[2i] = s[0]
s = layout::shfl_down0(s, 1);
digit::add_cyio(s, cy, s, hi);
hi = get(hi, 0);
diag_lo = (L == 2*i + 1) ? hi : diag_lo;
s0 = get(s, 0);
r = (L == 2*i + 1) ? s0 : r; // r[2i+1] = s[0]
s = layout::shfl_down0(s, 1);
}
// TODO: All these carries and borrows into s should be accumulated into
// one call.
add(s, s, cy);
fixnum overflow;
lshift_small(s, s, 1); // s *= 2
lshift_small(r, overflow, r, 1); // r *= 2
add_cy(s, cy, s, overflow); // really a logior, since s was just lshifted.
assert(digit::is_zero(cy));
// Doubling r above means we've doubled the diagonal terms, though they
// shouldn't be. Compensate by subtracting a copy of them here.
digit br;
sub_br(r, br, r, diag_lo);
br = (L == 0) ? br : digit::zero();
sub(s, s, br);
// TODO: This is wasteful, since the odd lane lo's are discarded as are
// the even lane hi's.
fixnum lo, hi, ai = get(a, W/2 + L/2);
digit::mul_lo(lo, ai, ai);
digit::mul_hi(hi, ai, ai);
fixnum diag_hi = L & 1 ? hi : lo;
add(s, s, diag_hi);
rr = r;
ss = s;
}
__device__ __forceinline__ static void
sqr_wide(fixnum &ss, fixnum &rr, fixnum a) {
// Width below which the general multiplication function is used instead
// of this one. TODO: 16 is very high; need to work out why we're not
// doing better on smaller widths.
constexpr int SQUARING_WIDTH_THRESHOLD = 16;
if (layout::WIDTH < SQUARING_WIDTH_THRESHOLD)
mul_wide(ss, rr, a, a);
else
sqr_wide_(ss, rr, a);
}
__device__ static void sqr_lo(fixnum &r, fixnum a) {
// TODO: Implement specific sqr_lo function.
fixnum s;
sqr_wide(s, r, a);
}
__device__ static void sqr_hi(fixnum &s, fixnum a) {
// TODO: Implement specific sqr_hi function.
fixnum r;
sqr_wide(s, r, a);
}
/*
* Return a mask of width bits whose ith bit is set if and only if
* the ith digit of r is nonzero. In particular, result is zero
* iff r is zero.
*/
__device__ static uint32_t nonzero_mask(fixnum r) {
return layout::ballot( ! digit::is_zero(r));
}
/*
* Return -1, 0, or 1, depending on whether x is less than, equal
* to, or greater than y.
*/
__device__ static int cmp(fixnum x, fixnum y) {
fixnum r;
digit br;
sub_br(r, br, x, y);
// r != 0 iff x != y. If x != y, then br != 0 => x < y.
return nonzero_mask(r) ? (br ? -1 : 1) : 0;
}
/*
* Return the index of the most significant digit of x, or -1 if x is
* zero.
*/
__device__ static int most_sig_dig(fixnum x) {
// FIXME: Should be able to get this value from limits or numeric_limits
// or whatever.
enum { UINT32_BITS = 8 * sizeof(uint32_t) };
static_assert(UINT32_BITS == 32, "uint32_t isn't 32 bits");
uint32_t a = nonzero_mask(x);
return UINT32_BITS - (internal::clz(a) + 1);
}
/*
* Return the index of the most significant bit of x, or -1 if x is
* zero.
*
* TODO: Give this function a better name; maybe floor_log2()?
*/
__device__ static int msb(fixnum x) {
int b = most_sig_dig(x);
if (b < 0) return b;
digit y = layout::shfl(x, b);
// TODO: These two lines are basically the same as most_sig_dig();
// refactor.
int c = digit::clz(y);
return digit::BITS - (c + 1) + digit::BITS * b;
}
/*
* Return the 2-valuation of x, i.e. the integer k >= 0 such that
* 2^k divides x but 2^(k+1) does not divide x. Depending on the
* representation, can think of this as CTZ(x) ("Count Trailing
* Zeros"). The 2-valuation of zero is *ahem* fixnum::BITS.
*
* TODO: Refactor common code between here, msb() and
* most_sig_dig(). Perhaps write msb in terms of two_valuation?
*
* FIXME: Pretty sure this function is broken; e.g. if x is 0 but width <
* warpSize, the answer is wrong.
*/
__device__ static int two_valuation(fixnum x) {
uint32_t a = nonzero_mask(x);
int b = internal::ctz(a), c = 0;
if (b < SLOT_WIDTH) {
digit y = layout::shfl(x, b);
c = digit::ctz(y);
} else
b = SLOT_WIDTH;
return c + b * digit::BITS;
}
__device__
static void
lshift_small(fixnum &y, fixnum &overflow, fixnum x, int b) {
assert(b >= 0);
assert(b <= digit::BITS);
int L = layout::laneIdx();
fixnum cy;
digit::lshift(y, cy, x, b);
overflow = top_digit(cy);
overflow = (L == 0) ? overflow : fixnum::zero();
cy = layout::shfl_up0(cy, 1);
digit::add(y, y, cy); // logior
}
__device__
static void
lshift_small(fixnum &y, fixnum x, int b) {
assert(b >= 0);
assert(b <= digit::BITS);
fixnum cy;
digit::lshift(y, cy, x, b);
cy = layout::shfl_up0(cy, 1);
digit::add(y, y, cy); // logior
}
/*
* Set y to be x shifted by b bits to the left; effectively
* multiply by 2^b. Return the top b bits of x in overflow.
*
* FIXME: Currently assumes that fixnum is unsigned.
*
* TODO: Think of better names for these functions. Something like
* mul_2exp.
*
* TODO: Could improve performance significantly by using the funnel shift
* instruction: https://docs.nvidia.com/cuda/parallel-thread-execution/#logic-and-shift-instructions-shf
*/
__device__
static void
lshift(fixnum &y, fixnum &overflow, fixnum x, int b) {
assert(b >= 0);
assert(b <= BITS);
int q = b / digit::BITS, r = b % digit::BITS;
y = layout::rotate_up(x, q);
// Hi bits of y[i] (=overflow) become the lo bits of y[(i+1) % width]
digit::lshift(y, overflow, y, r);
overflow = layout::rotate_up(overflow, 1);
// TODO: This was "y |= overflow"; any advantage to using logior?
digit::add(y, y, overflow);
fixnum t;
int L = layout::laneIdx();
digit::set_if(overflow, y, L <= q); // Kill high (q-1) words of y;
digit::rem_2exp(t, overflow, r); // Kill high BITS - r bits of overflow[q]
set(overflow, t, q);
digit::set_if(y, y, L >= q); // Kill low q words of y;
digit::rshift(t, y, r); // Kill low r bits of y[q]
digit::lshift(t, t, r);
set(y, t, q);
}
__device__
static void
lshift(fixnum &y, fixnum x, int b) {
assert(b >= 0);
assert(b <= BITS);
int q = b / digit::BITS, r = b % digit::BITS;
y = layout::shfl_up0(x, q);
lshift_small(y, y, r);
}
/*
* Set y to be x shifted by b bits to the right; effectively
* divide by 2^b. Return the bottom b bits of x.
*
* TODO: Think of better names for these functions. Something like
* mul_2exp.
*/
__device__
static void
rshift(fixnum &y, fixnum &underflow, fixnum x, int b) {
lshift(underflow, y, x, BITS - b);
}
__device__
static void
rshift(fixnum &y, fixnum x, int b) {
fixnum underflow;
rshift(y, underflow, x, b);
}
private:
__device__
static void
digit_to_fixnum(digit &c) {
int L = layout::laneIdx();
// TODO: Try without branching? c &= -(digit)(L == 0);
c = (L == 0) ? c : digit::zero();
}
__device__
static digit
effective_carries(digit &cy_hi, int propagate, int cy) {
int L = layout::laneIdx();
uint32_t allcarries, p, g;
g = layout::ballot(cy); // carry generate
p = layout::ballot(propagate); // carry propagate
allcarries = (p | g) + g; // propagate all carries
// NB: There is no way to unify these two expressions to remove the
// conditional. The conditional should be optimised away though, since
// WIDTH is a compile-time constant.
cy_hi = (layout::WIDTH == WARPSIZE) // detect hi overflow
? (allcarries < g)
: ((allcarries >> layout::WIDTH) & 1);
allcarries = (allcarries ^ p) | (g << 1); // get effective carries
return (allcarries >> L) & 1;
}
};
} // End namespace cuFIXNUM