-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunJansenRit.py
246 lines (180 loc) · 7.69 KB
/
runJansenRit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 16 14:57:25 2018
@author: Carlos Coronel
Modified version of the Jansen and Rit Neural Mass Model [1,2].
The script runs the model for generate EEG-like and BOLD-like signals.
All the graph metrics employed were taken from the Brain Connectivity Toolbox for Python [4]:
https://github.com/aestrivex/bctpy
[1] Jansen, B. H., & Rit, V. G. (1995). Electroencephalogram and visual evoked
potential generation in a mathematical model of coupled cortical columns.
Biological cybernetics, 73(4), 357-366.
[2] Coronel-Oliveros, C., Cofré, R., & Orio, P. (2021). Cholinergic
neuromodulation of inhibitory interneurons facilitates functional
integration in whole-brain models. PLoS computational biology, 17(2), e1008737.
[3] Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity:
uses and interpretations. Neuroimage, 52(3), 1059-1069.
"""
import numpy as np
from scipy import signal
import time
import BOLDModel as BD
import JansenRitModel as JR
import graph_utils
import FCD
import matplotlib.pyplot as plt
import importlib
from matrix_checking import fast_checking
importlib.reload(JR)
#Simulation parameters
JR.dt = 1E-3 #Integration step
JR.teq = 60 #Simulation time for stabilizing the system
JR.tmax = 600 #Length of simulated signals
ttotal = JR.teq + JR.tmax #Total simulation time
JR.downsamp = 10 #Downsampling to reduce the number of points
Neq = int(JR.teq / JR.dt / JR.downsamp) #Number of points to discard
Nmax = int(JR.tmax / JR.dt / JR.downsamp) #Number of points of simulated signals
Ntotal = Neq + Nmax #Total number of points of simulation
seed = 0 #Random Seed
#Network parameters
JR.M = np.loadtxt('structural_Deco_AAL.txt') #structural connectivity
JR.norm = np.mean(np.sum(JR.M,0)) #normalization
JR.nnodes = len(JR.M) #number of nodes
nnodes = JR.nnodes
#NOTE: for changing the network topology use the code "Network_Surrogates.py", and applied
#the functions over the original structural connectivity matrix. Remember re-normalize after
#the change of the structural connectivity.
#Selective neuromodulation
basal_r0 = 0.33 #Slope of pyramidal neurons sigmoid function (BASAL VALUE FOR OVERALL NODES)
nodes_subset = np.ones(nnodes) #Here specify the nodes that will be neuromodulated
target_r0 = 0.67 #Target r0 value for nodes_subset
#NOTE: nodes_subset may be replaced by the subset of nodes of interest, ordered by strength,
#efficiency, etc. In the code "NodesSubsets.py" it can be found examples using a human structural
#connectivity. Use "nodes_subset = np.ones(nnodes)" to neuromodulate all nodes simultaneously
#Nodes parameters
JR.sigma = 2 #Input standard deviation
JR.alpha = 0 #Long-range pyramidal to pyramidal coupling
#Slope of pyramidal neurons sigmoid function
JR.r0 = basal_r0 + (target_r0 - basal_r0) * nodes_subset
JR.p = 2 #Input mean
#Simulations
JR.seed = seed
init1 = time.time()
y, time_vector = JR.Sim(verbose = True)
pyrm = JR.C2 * y[:,1] - JR.C4 * y[:,2] + JR.C * JR.alpha * y[:,3] #EEG-like output of the model
end1 = time.time()
print([end1 - init1])
#%%
#Plot EEG-like signals
plt.figure(1)
plt.clf()
plt.plot(time_vector[Neq:(Neq+10000)], pyrm[Neq:(Neq+10000),:])
plt.tight_layout()
#%%
#This part calculates several measures over the EEG-like signals: global phase synchronization,
#frequency of oscillation, signal to noise ratio, and regularity.
init2 = time.time()
#Welch method to stimate power spectal density (PSD)
#Remember: dt = original integration step, dws = downsampling
window_length = 20 #in seconds
PSD_window = int(window_length / JR.dt / JR.downsamp) #Welch time window
PSD = signal.welch(pyrm[Neq:,:] - np.mean(pyrm[Neq:,:], axis = 0), fs = 1 / JR.dt / JR.downsamp,
nperseg = PSD_window, noverlap = PSD_window // 2,
scaling = 'density', axis = 0)
freq_vector = PSD[0] #Frequency values
PSD_curves = PSD[1] #PSD curves for each node
freq_min_point = int(1 / np.diff(freq_vector)[0]) #Frequency steps (in points)
#Position (pos) of the frequency (freqs) with max power, for freqs > 1
pos = np.argmax(PSD_curves[freq_min_point:,:], axis = 0)
freqs = freq_vector[freq_min_point:][pos]
#Mean and variance of the frequency for all the oscillators
Mfreq = np.mean(freqs)
Varfreq = np.var(freqs)
#This is for avoiding negative values of the minimum frequency of the filter
if Mfreq <= 3.5:
Mfilt = 3.5
else:
Mfilt = Mfreq
#Filtering signals
Fmin, Fmax = Mfilt - 3, Mfilt + 3
a0, b0 = signal.bessel(3, [2 * JR.dt * Fmin * JR.downsamp,
2 * JR.dt * Fmax * JR.downsamp], btype = 'bandpass')
Vfilt = signal.filtfilt(a0, b0, pyrm, axis = 0)
#Synchronization
phases_signal = np.angle(signal.hilbert(Vfilt[Neq:,:], axis = 0)) #Phases
phaseSynch = graph_utils.simple_order_parameter(phases_signal) #Kuramoto order parameter
meanSynch = np.mean(phaseSynch) #Averaged Kuramoto order parameter
varSynch = np.var(phaseSynch) #Variance of the Kuramoto order parameter (Metastability)
end2 = time.time()
print([end2 - init2])
#%%
#Power spectral density functions
plt.figure(3)
plt.clf()
plt.plot(freq_vector[1:-2], 10 * np.log10 (PSD_curves[1:-2,:]))
plt.tight_layout()
#Kuramoto order parameter
plt.figure(4)
plt.clf()
plt.plot(phaseSynch)
plt.ylim(0,1)
plt.tight_layout()
#%%
#fMRI-BOLD response
init3 = time.time()
if np.any(JR.r0 == 0):
rE = JR.s(pyrm, JR.r0 + 1E-4)
else:
rE = JR.s(pyrm, JR.r0)
BOLD_signals = BD.Sim(rE, nnodes, JR.dt * JR.downsamp)
BOLD_signals = BOLD_signals[Neq:,:]
BOLD_downsamp = 100
BOLD_dt = JR.dt * JR.downsamp * BOLD_downsamp
BOLD_signals = BOLD_signals[::BOLD_downsamp,:]
#Filter the BOLD-like signal between 0.01 and 0.1 Hz
Fmin, Fmax = 0.01, 0.1
a0, b0 = signal.bessel(3, [2 * BOLD_dt * Fmin, 2 * BOLD_dt * Fmax], btype = 'bandpass')
BOLDfilt = signal.filtfilt(a0, b0, BOLD_signals[:,:], axis = 0)
#Surrogate thresholding
#sFC: static Functional Connectivity (sFC) matrix
sFC_BOLD = graph_utils.probabilistic_thresholding(BOLDfilt, 500, 0.05)[0]
end3 = time.time()
print([end3 - init3])
#%%
#Filtered BOLD-like signals
plt.figure(5)
plt.clf()
plt.plot(BOLDfilt)
plt.tight_layout()
#sFC matrix
plt.figure(6)
plt.clf()
plt.imshow(sFC_BOLD, cmap = 'RdBu', vmin = -1, vmax = 1)
plt.tight_layout()
#%%
#Graph Analysis
init4 = time.time()
#The function below calculates several graph metrics.
#Inputs: weighted and undirected functional connectivity matrix; threshold for the agreement matrix (tau);
#Number of iterations of the Louvain algorithm (reps), resolution parameter of the Louvain algorithm (gamma)
results = fast_checking(sFC_BOLD, tau = 0.5, reps = 200, gamma = 1)
#CP: characteristic path; GE: global efficiency; PC: mean participation coefficient
#TT: Transitivity; LE: local efficiency; QW: modularity
CP, GE, PC = results[0], results[1], results[2]
TT, LE, QW = results[3], results[4], results[5]
end4 = time.time()
print([end4 - init4])
#%%
#Functional Connectivity Dynamics (FCD)
init5 = time.time()
L = 100 #Window length (in seconds)
mode = 2 #Mode of the FCD. 1: Pearson, 2: Clarkson
FCD_matrix, L_points, steps = FCD.extract_FCD(BOLDfilt, L = L, mode = mode, dt = BOLD_dt, steps = 2)
#Calculate the typical FCD speed (dtyp) and FCD variance (varFCD, multistability)
dtyp, varFCD = FCD.FCD_vars(FCD_matrix, L_points, steps, bins = 20, vmin = 0, vmax = 1)
#Plot the FCD
plt.figure(7)
plt.clf()
plt.imshow(FCD_matrix, vmin = 0, vmax = 1, cmap = 'jet')
end5 = time.time()
print([end5 - init5])