-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
386 lines (291 loc) · 18.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torchvision.transforms as T
import torch.optim as optim
import torch.nn as nn
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from models import VDAN
from utils import *
from coco_captions_dataset import CocoCaptionsDataset
from torch.utils.tensorboard import SummaryWriter
from datetime import datetime
import time
import socket
import getpass
import multiprocessing
import argparse
import os
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
WORKERS = int(0.9*multiprocessing.cpu_count()) # number of workers for loading data in the DataLoader
PRINT_FREQ = 100 # print training or validation status every __ batches
IMAGENET_MEAN = [0.485, 0.456, 0.406]
IMAGENET_STD = [0.229, 0.224, 0.225]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cudnn.benchmark = True # set to true only if inputs to model are fixed size; otherwise lot of computational overhead
def write_batch_to_log(writer, root_path, imgs_paths, documents, i_epoch):
img = mpimg.imread(os.path.join(root_path, imgs_paths[0]))
fig, axs = plt.subplots(2, 1, figsize=(10, 20))
axs[0].imshow(img)
axs[1].text(0, 0, '.\n '.join([doc[0] for doc in documents]), wrap=True)
writer.add_figure('img_{}'.format(0), fig, i_epoch)
writer.add_text('img_{}'.format(0), '. '.join([doc[0] for doc in documents]), i_epoch)
def create_sets(word_map, train_params):
if train_params['do_random_horizontal_flip']:
train_transform = T.Compose([T.Resize(train_params['resize_size']),
T.RandomCrop(train_params['random_crop_size']),
T.RandomHorizontalFlip(),
T.ToTensor(),
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)])
else:
train_transform = T.Compose([T.Resize(train_params['resize_size']),
T.RandomCrop(train_params['random_crop_size']),
T.ToTensor(),
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)])
val_transform = T.Compose([T.Resize(train_params['resize_size']),
T.CenterCrop(train_params['random_crop_size']),
T.ToTensor(),
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)])
# Data location and settings
training_data = CocoCaptionsDataset(root=train_params['train_data_path'],
annFile=train_params['captions_train_fname'],
word_map=word_map,
img_transform=train_transform,
annotations_transform=T.ToTensor(),
num_sentences=train_params['max_sents'],
max_words=train_params['max_words'],
dataset_proportion=train_params['train_data_proportion'])
validation_data = CocoCaptionsDataset(root=train_params['val_data_path'],
annFile=train_params['captions_val_fname'],
word_map=word_map,
img_transform=val_transform,
annotations_transform=T.ToTensor(),
num_sentences=train_params['max_sents'],
max_words=train_params['max_words'],
dataset_proportion=train_params['val_data_proportion'])
# Data loaders
training_dataloader = torch.utils.data.DataLoader(training_data,
batch_size=train_params['train_batch_size'],
num_workers=WORKERS,
shuffle=True)
validation_dataloader = torch.utils.data.DataLoader(validation_data,
batch_size=train_params['val_batch_size'],
num_workers=WORKERS,
shuffle=False)
return training_dataloader, validation_dataloader, training_data, validation_data
def train(training_dataloader, training_data, model, criterion, optimizer, epoch, writer):
model.train() # training mode enables dropout
batch_time = AverageMeter() # forward prop. + back prop. time per batch
data_time = AverageMeter() # data loading time per batch
losses = AverageMeter() # cross entropy loss
start = time.time()
num_batches = len(training_dataloader)
# Batches
for i, (imgs_paths, captions_docs, imgs, documents, sentences_per_document, words_per_sentence, labels) in enumerate(training_dataloader):
data_time.update(time.time() - start)
imgs = imgs.to(device)
# pdb.set_trace()
documents = documents.squeeze(1).to(device) # (batch_size, sentence_limit, word_limit)
sentences_per_document = sentences_per_document.to(device) # (batch_size)
words_per_sentence = words_per_sentence.to(device) # (batch_size, sentence_limit)
labels = labels.squeeze(1).to(device) # (batch_size)
# Forward prop.
imgs_embeddings, texts_embeddings, word_alphas, sentence_alphas = model(imgs, documents, sentences_per_document, words_per_sentence)
# Loss
loss = criterion(imgs_embeddings, texts_embeddings, labels) # scalar
# Back prop.
optimizer.zero_grad()
loss.backward()
# Clip gradients
if train_params['grad_clip'] is not None:
clip_gradient(optimizer, grad_clip)
# Update
optimizer.step()
# Keep track of metrics
losses.update(loss.item(), labels.size(0))
batch_time.update(time.time() - start)
start = time.time()
# Print training status
if i % PRINT_FREQ == 0:
print('[{0}] Epoch: [{1}][{2}/{3}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data Load Time {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
epoch+1, i, num_batches,
batch_time=batch_time,
data_time=data_time,
loss=losses))
writer.add_scalar('Batch_Loss/train', losses.val, epoch*num_batches + i)
writer.add_scalar('Epoch_Loss/train', losses.avg, epoch)
return losses.avg
def validate(validation_dataloader, validation_data, model, criterion, epoch, writer):
model.eval() # training mode enables dropout
# UNCOMMENT TO PERFORM VALIDATION
val_batch_time = AverageMeter() # forward prop. + back prop. time per batch
val_data_time = AverageMeter() # data loading time per batch
val_losses = AverageMeter() # cross entropy loss
val_start = time.time()
num_batches = len(validation_dataloader)
val_dots = np.ndarray((len(validation_data),), dtype=np.float32)
for i, (imgs_paths, captions_docs, imgs, documents, sentences_per_document, words_per_sentence, labels) in enumerate(validation_dataloader):
val_data_time.update(time.time() - val_start)
imgs = imgs.to(device)
documents = documents.squeeze(1).to(device) # (batch_size, sentence_limit, word_limit)
sentences_per_document = sentences_per_document.to(device) # (batch_size)
words_per_sentence = words_per_sentence.to(device) # (batch_size, sentence_limit)
labels = labels.squeeze(1).to(device) # (batch_size)
# Forward prop.
with torch.no_grad():
imgs_embeddings, texts_embeddings, word_alphas, sentence_alphas = model(imgs, documents, sentences_per_document, words_per_sentence)
# Loss
loss = criterion(imgs_embeddings, texts_embeddings, labels) # scalar
imgs_embeddings = imgs_embeddings.detach().cpu()
texts_embeddings = texts_embeddings.detach().cpu()
val_dots[i*train_params['val_batch_size']:(i+1)*train_params['val_batch_size']] = np.dot(imgs_embeddings, texts_embeddings.T).diagonal()/(np.linalg.norm(imgs_embeddings, axis=1)*np.linalg.norm(texts_embeddings, axis=1))
# Keep track of metrics
val_losses.update(loss.item(), labels.size(0))
val_batch_time.update(time.time() - val_start)
val_start = time.time()
# Print training status
if i % PRINT_FREQ == 0:
print('\tEpoch: [{0}][{1}/{2}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data Load Time {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})'.format(epoch+1, i, len(validation_dataloader),
batch_time=val_batch_time,
data_time=val_data_time,
loss=val_losses))
write_batch_to_log(writer, validation_data.root, imgs_paths, captions_docs, i)
writer.add_scalar('Epoch_Loss/val', val_losses.avg, epoch)
writer.add_histogram('Val_Dots_Distribution', val_dots, epoch)
return val_losses.avg
def main(model_params, train_params):
if not os.path.isdir(train_params['log_folder']):
print('Log folder "{}" does not exist. We are attempting creating it... '.format(train_params['log_folder']))
os.mkdir(train_params['log_folder'])
print('Folder created!')
if train_params['finetune_semantic_model']:
print('[{}] Loading saved model weights to finetune (or continue training): {}...'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S'), train_params['model_checkpoint_filename']))
_, model, optimizer_state_dict, word_map, model_params, train_params = load_checkpoint(train_params['model_checkpoint_filename'])
datetimestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
writer = SummaryWriter(log_dir='{}/{}_{}_lr{}_{}eps_ft/'.format(train_params['log_folder'], datetimestamp, train_params['hostname'], train_params['learning_rate'], train_params['num_epochs']), filename_suffix='_{}'.format(datetimestamp))
else:
embeddings, word_map = load_embeddings_matrix(train_params['embeddings_filename'], model_params['word_embed_size'], train_params['use_fake_embeddings'])
vocab_size = len(word_map)
model = VDAN(vocab_size=vocab_size,
doc_emb_size=model_params['doc_embed_size'],
sent_emb_size=model_params['sent_embed_size'],
word_emb_size=model_params['word_embed_size'],
hidden_feat_emb_size=model_params['hidden_feat_size'],
final_feat_emb_size=model_params['feat_embed_size'],
sent_rnn_layers=model_params['sent_rnn_layers'],
word_rnn_layers=model_params['word_rnn_layers'],
sent_att_size=model_params['sent_att_size'],
word_att_size=model_params['word_att_size'],
use_visual_shortcut=model_params['use_visual_shortcut'],
use_sentence_level_attention=model_params['use_sentence_level_attention'],
use_word_level_attention=model_params['use_word_level_attention'],
pretrained_img_embedder=True) # Pretrained on ImageNet
# Init word embeddings layer with pretrained embeddings
model.text_embedder.doc_embedder.sent_embedder.init_pretrained_embeddings(embeddings)
model.text_embedder.doc_embedder.sent_embedder.allow_word_embeddings_finetunening(False) # Make it available to finetune the word embeddings
model.img_embedder.fine_tune(False) # Freeze/Unfreeze ResNet-50 layers. We didn't use it in our paper. But, feel free to try ;)
model.apply(init_weights) # Apply function "init_weights" to all FC layers of our model.
datetimestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
writer = SummaryWriter(log_dir='{}/{}_{}_lr{}_{}eps/'.format(train_params['log_folder'], datetimestamp, train_params['hostname'], train_params['learning_rate'], train_params['num_epochs']), filename_suffix='_{}'.format(datetimestamp))
training_dataloader, validation_dataloader, training_data, validation_data = create_sets(word_map, train_params)
if train_params['optimizer'] == 'Adam':
optimizer = optim.Adam(params=filter(lambda p: p.requires_grad, model.parameters()), lr=train_params['learning_rate'])
elif train_params['optimizer'] == 'SGD':
optimizer = optim.SGD(params=filter(lambda p: p.requires_grad, model.parameters()), lr=train_params['learning_rate'])
# Loss functions
criterion = train_params['criterion']
# Move to device
model = model.to(device)
criterion = criterion.to(device)
print(model)
# Epochs
curr_val_loss = float('inf')
for epoch in range(0, train_params['num_epochs']):
# One epoch's training
train_loss = train(training_dataloader=training_dataloader,
training_data=training_data,
model=model,
criterion=criterion,
optimizer=optimizer,
epoch=epoch,
writer=writer)
val_loss = validate(validation_dataloader=validation_dataloader,
validation_data=validation_data,
model=model,
criterion=criterion,
epoch=epoch,
writer=writer)
if train_params['learning_rate_decay'] is not None and epoch % train_params['decay_at_every'] == train_params['decay_at_every']-1:
# Decay learning rate every epoch
adjust_learning_rate(optimizer, train_params['learning_rate_decay'])
if val_loss < curr_val_loss:
# Save checkpoint
# save_checkpoint(epoch+1, model, optimizer, word_map, datetimestamp, model_params, train_params)
curr_val_loss = val_loss
if __name__ == '__main__':
"""
Parse arguments from command line input
"""
parser = argparse.ArgumentParser(description='Parameters')
parser.add_argument('-m', '--model_checkpoint_filename', type=str, default=None, dest='model_checkpoint_filename', help="Name (complete path) of the trained model (or checkpoint) file you want to FINE TUNE.")
args = parser.parse_args()
model_params = {
'word_embed_size': 300,
'sent_embed_size': 1024,
'doc_embed_size': 2048,
'hidden_feat_size': 512,
'feat_embed_size': 128,
'sent_rnn_layers': 1,
'word_rnn_layers': 1,
'word_att_size': 1024, # Same as sent_embed_size
'sent_att_size': 2048, # Same as doc_embed_size
'use_sentence_level_attention': True,
'use_word_level_attention': True,
'use_visual_shortcut': True, # Uses the ResNet-50 output as the first hidden state (h_0) of the document embedder Bi-GRU.
}
train_params = {
##### Train data files #####
# COCO 2017 TODO: Download COCO 2017 and set the following folders according to your root for COCO 2017
'captions_train_fname': 'resources/COCO_2017/annotations/captions_train2017.json', # TODO: Download the annotation file available at: http://images.cocodataset.org/annotations/annotations_trainval2017.zip
'captions_val_fname': 'resources/COCO_2017/annotations/captions_val2017.json', # TODO: Download the nnotation file available at: http://images.cocodataset.org/annotations/annotations_trainval2017.zip
'train_data_path': 'resources/COCO_2017/train2017/', # TODO: Download and unzip the folder available at http://images.cocodataset.org/zips/train2017.zip
'val_data_path': 'resources/COCO_2017/val2017/', # Download and unzip the folder available at http://images.cocodataset.org/zips/val2017.zip
'embeddings_filename': 'resources/glove.6B.300d.txt', # TODO: Download and unzip the file "glove.6B.300d.txt" from the folder "glove.6B" currently available at http://nlp.stanford.edu/data/glove.6B.zip
'use_fake_embeddings': False, # Choose if you want to use fake embeddings (Tip: Activate to speed-up debugging) -- It adds random word embeddings, removing the demand of loading the embeddings.
# Choose how much data you want to use for training and validating (Tip: Use lower values to speed-up debugging)
'train_data_proportion': 1.,
'val_data_proportion': 1.,
# Training parameters (Values for the pretrained model may be different from these values below)
'max_sents': 10, # maximum number of sentences per document
'max_words': 20, # maximum number of words per sentence
'train_batch_size': 64,
'val_batch_size': 64,
'num_epochs': 30,
'learning_rate': 1e-5,
'learning_rate_decay': None, # We didn't use it in our paper. But, feel free to try ;)
'decay_at_every': None, # We didn't use it in our paper. But, feel free to try ;)
'grad_clip': None, # clip gradients at this value. We didn't use it in our paper. But, feel free to try ;)
'finetune_semantic_model': args.model_checkpoint_filename is not None,
'model_checkpoint_filename': args.model_checkpoint_filename,
# Image transformation parameters
'resize_size': 256,
'random_crop_size': 224,
'do_random_horizontal_flip': True,
# Machine and user data
'username': getpass.getuser(),
'hostname': socket.gethostname(),
# Training process
'optimizer': 'Adam', # We also tested with SGD -- No improvement over Adam
'criterion': nn.CosineEmbeddingLoss(0.),
'checkpoint_folder': 'models',
'log_folder': 'logs'
}
main(model_params, train_params)