-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeatures.py
118 lines (106 loc) · 5.43 KB
/
features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import numpy as np
import cv2
from skimage.feature import hog
# Define a function to return HOG features and visualization
def get_hog_features(img, orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=True):
# Call with two outputs if vis==True
if vis:
features, hog_image = hog(img, orientations=orient,
pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block),
transform_sqrt=True,
visualise=vis, feature_vector=feature_vec)
return features, hog_image
# Otherwise call with one output
else:
features = hog(img, orientations=orient,
pixels_per_cell=(pix_per_cell, pix_per_cell),
cells_per_block=(cell_per_block, cell_per_block),
transform_sqrt=True,
visualise=vis, feature_vector=feature_vec)
return features
# Define a function to compute binned color features
def bin_spatial(img, size=(32, 32)):
# Use cv2.resize().ravel() to create the feature vector
features = cv2.resize(img, size).ravel()
# Return the feature vector
return features
def color_hist(img, nbins=32, bins_range=(0, 256)):
"""Define a function to compute color histogram features"""
# Compute the histogram of the color channels separately
channel1_hist = np.histogram(img[:, :, 0], bins=nbins, range=bins_range)
channel2_hist = np.histogram(img[:, :, 1], bins=nbins, range=bins_range)
channel3_hist = np.histogram(img[:, :, 2], bins=nbins, range=bins_range)
# Concatenate the histograms into a single feature vector
hist_features = np.concatenate((channel1_hist[0], channel2_hist[0], channel3_hist[0]))
# Return the individual histograms, bin_centers and feature vector
return hist_features
def single_img_features(img, color_space='RGB', spatial_size=(32, 32),
hist_bins=32, hist_range=(0, 256), orient=9,
pix_per_cell=8, cell_per_block=2, hog_channel=0,
spatial_feat=True, hist_feat=True, hog_feat=True):
"""Define a function to extract features from a single image window"""
# 1) Define an empty list to receive features
img_features = []
# 2) Apply color conversion if other than 'RGB'
if color_space != 'RGB':
if color_space == 'HSV':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
elif color_space == 'LUV':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2LUV)
elif color_space == 'HLS':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
elif color_space == 'YUV':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2YUV)
elif color_space == 'YCrCb':
feature_image = cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb)
else:
feature_image = np.copy(img)
# 3) Compute spatial features if flag is set
if spatial_feat:
spatial_features = bin_spatial(feature_image, size=spatial_size)
# 4) Append features to list
img_features.append(spatial_features)
# 5) Compute histogram features if flag is set
if hist_feat:
hist_features = color_hist(feature_image, nbins=hist_bins, bins_range=hist_range)
# 6) Append features to list
img_features.append(hist_features)
# 7) Compute HOG features if flag is set
if hog_feat:
if hog_channel == 'ALL':
hog_features = []
for channel in range(feature_image.shape[2]):
hog_features.extend(get_hog_features(feature_image[:, :, channel],
orient, pix_per_cell, cell_per_block,
vis=False, feature_vec=True))
else:
hog_features = get_hog_features(feature_image[:, :, hog_channel], orient,
pix_per_cell, cell_per_block, vis=False, feature_vec=True)
# 8) Append features to list
img_features.append(hog_features)
# 9) Return concatenated array of features
return np.concatenate(img_features)
def extract_features(imgs, color_space='RGB', spatial_size=(32, 32),
hist_bins=32, hist_range=(0, 256), orient=9,
pix_per_cell=8, cell_per_block=2, hog_channel=0,
spatial_feat=True, hist_feat=True, hog_feat=True):
"""Define a function to extract features from a list of images
Have this function call bin_spatial() and color_hist()
"""
# Create a list to append feature vectors to
features = []
# Iterate through the list of images
for file in imgs:
# Read in each one by one
image = cv2.imread(file)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
file_features = single_img_features(image, color_space=color_space, spatial_size=spatial_size,
hist_bins=hist_bins, orient=orient, pix_per_cell=pix_per_cell,
cell_per_block=cell_per_block, hist_range=hist_range,
hog_channel=hog_channel, spatial_feat=spatial_feat,
hist_feat=hist_feat, hog_feat=hog_feat)
features.append(file_features)
# Return list of feature vectors
return features