forked from textiles-lab/autoknit
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathak-embedded_path.cpp
385 lines (315 loc) · 12.8 KB
/
ak-embedded_path.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
#include "pipeline.hpp"
#include <unordered_map>
#include <unordered_set>
#include <algorithm>
#include <iostream>
#include <stdexcept>
#include <glm/gtx/hash.hpp>
#include <glm/gtx/norm.hpp>
void embedded_path_simple(
ak::Parameters const ¶meters,
ak::Model const &model,
ak::EmbeddedVertex const &source,
ak::EmbeddedVertex const &target,
std::vector< ak::EmbeddedVertex > *path_ //out: path; path[0] will be source and path.back() will be target
) {
assert(source != target);
assert(path_);
auto &path = *path_;
path.clear();
//idea: place distance storage along each edge and on each corner.
std::vector< ak::EmbeddedVertex > loc_ev;
std::vector< glm::vec3 > loc_pos;
//TODO: eventually, incrementally build locs starting from source / target verts
//add locs for each vertex in the mesh:
std::vector< uint32_t > vertex_locs;
vertex_locs.reserve(model.vertices.size());
for (uint32_t vi = 0; vi < model.vertices.size(); ++vi) {
vertex_locs.emplace_back(loc_ev.size());
loc_ev.emplace_back(ak::EmbeddedVertex::on_vertex(vi));
loc_pos.emplace_back(loc_ev.back().interpolate(model.vertices));
}
//make an edge-to-triangle look-up structure:
std::unordered_multimap< glm::uvec2, uint32_t > edge_triangles;
std::unordered_map< glm::uvec3, uint32_t > simplex_triangle;
std::unordered_set< glm::uvec2 > edges;
for (auto const &tri : model.triangles) {
uint32_t ti = &tri - &model.triangles[0];
auto do_edge = [&](uint32_t a, uint32_t b) {
if (a > b) std::swap(a,b);
edge_triangles.insert(std::make_pair(glm::uvec2(a,b), ti));
edges.insert(glm::uvec2(a,b));
};
do_edge(tri.x, tri.y);
do_edge(tri.y, tri.z);
do_edge(tri.z, tri.x);
glm::uvec3 simplex = tri;
if (simplex.x > simplex.y) std::swap(simplex.x, simplex.y);
if (simplex.y > simplex.z) std::swap(simplex.y, simplex.z);
if (simplex.x > simplex.y) std::swap(simplex.x, simplex.y);
auto ret = simplex_triangle.insert(std::make_pair(simplex, ti));
assert(ret.second);
}
//add (several?) locs along each edge:
std::unordered_map< glm::uvec2, std::pair< uint32_t, uint32_t > > edge_locs;
edge_locs.reserve(edges.size());
float const max_spacing = parameters.get_max_path_sample_spacing();
for (auto const &e : edges) {
uint32_t count = std::max(0, int32_t(std::floor(glm::length(model.vertices[e.y] - model.vertices[e.x]) / max_spacing)));
uint32_t begin = loc_ev.size();
uint32_t end = begin + count;
edge_locs.insert(std::make_pair(e, std::make_pair(begin, end)));
for (uint32_t i = 0; i < count; ++i) {
loc_ev.emplace_back(ak::EmbeddedVertex::on_edge(e.x, e.y, (i + 0.5f) / float(count)));
loc_pos.emplace_back(loc_ev.back().interpolate(model.vertices));
}
assert(loc_ev.size() == end);
}
//build adjacency lists for each triangle:
std::vector< std::vector< uint32_t > > loc_tris(loc_ev.size());
std::vector< std::vector< uint32_t > > tri_adj(model.triangles.size());
for (auto const &tri : model.triangles) {
uint32_t ti = &tri - &model.triangles[0];
auto do_edge = [&](uint32_t a, uint32_t b) {
if (a > b) std::swap(b,a);
auto f = edge_locs.find(glm::uvec2(a,b));
assert(f != edge_locs.end());
for (uint32_t i = f->second.first; i < f->second.second; ++i) {
loc_tris[i].emplace_back(ti);
tri_adj[ti].emplace_back(i);
}
};
auto do_vertex = [&](uint32_t a) {
uint32_t i = vertex_locs[a];
loc_tris[i].emplace_back(ti);
tri_adj[ti].emplace_back(i);
};
do_edge(tri.x, tri.y);
do_edge(tri.y, tri.z);
do_edge(tri.z, tri.x);
do_vertex(tri.x);
do_vertex(tri.y);
do_vertex(tri.z);
}
//add source and target to the locs lists:
auto add_embedded = [&](ak::EmbeddedVertex const &ev) {
assert(ev.simplex.x != -1U);
if (ev.simplex.y == -1U) {
//at a vertex
return vertex_locs[ev.simplex.x];
} else if (ev.simplex.z == -1U) {
//on an edge
uint32_t idx = loc_ev.size();
loc_ev.emplace_back(ev);
loc_pos.emplace_back(loc_ev.back().interpolate(model.vertices));
loc_tris.emplace_back();
auto r = edge_triangles.equal_range(glm::uvec2(ev.simplex));
assert(r.first != r.second);
for (auto ri = r.first; ri != r.second; ++ri) {
uint32_t ti = ri->second;
loc_tris.back().emplace_back(ti);
tri_adj[ti].emplace_back(idx);
}
return idx;
} else {
//on a triangle
uint32_t idx = loc_ev.size();
loc_ev.emplace_back(ev);
loc_pos.emplace_back(loc_ev.back().interpolate(model.vertices));
auto f = simplex_triangle.find(ev.simplex);
assert(f != simplex_triangle.end());
uint32_t ti = f->second;
loc_tris.emplace_back();
loc_tris.back().emplace_back(ti);
tri_adj[ti].emplace_back(idx);
return idx;
}
};
uint32_t source_idx = add_embedded(source);
uint32_t target_idx = add_embedded(target);
/*//DEBUG:
std::cout << "Source is loc " << source_idx << " with adj\n";
for (auto t : loc_tris[source_idx]) {
std::cout << " " << t << ":";
for (auto a : tri_adj[t]) {
std::cout << " " << a;
}
std::cout << "\n";
}
std::cout.flush();*/
//now do actual search:
std::vector< float > loc_dis(loc_pos.size(), std::numeric_limits< float >::infinity());
std::vector< uint32_t > loc_from(loc_pos.size(), -1U);
glm::vec3 target_pos = target.interpolate(model.vertices);
std::vector< std::pair< float, std::pair< uint32_t, float > > > todo;
auto queue = [&](uint32_t at, float distance, uint32_t from) {
assert(distance < loc_dis[at]);
loc_dis[at] = distance;
loc_from[at] = from;
float heuristic = glm::length(target_pos - loc_pos[at]);
todo.emplace_back(std::make_pair(-(heuristic + distance), std::make_pair(at, distance)));
std::push_heap(todo.begin(), todo.end());
};
queue(source_idx, 0.0f, -1U);
while (!todo.empty()) {
std::pop_heap(todo.begin(), todo.end());
uint32_t at = todo.back().second.first;
float distance = todo.back().second.second;
todo.pop_back();
if (distance > loc_dis[at]) continue;
if (at == target_idx) break; //bail out early -- don't need distances to everything.
assert(distance == loc_dis[at]);
for (auto t : loc_tris[at]) {
for (auto n : tri_adj[t]) {
if (n == at) continue;
float d = distance + glm::length(loc_pos[n] - loc_pos[at]);
if (d < loc_dis[n]) queue(n, d, at);
}
}
}
//read back path:
if (loc_from[target_idx] == -1U) {
throw std::runtime_error("embedded_path requested between disconnected vertices");
}
uint32_t at = target_idx;
do {
path.emplace_back(loc_ev[at]);
at = loc_from[at];
} while (at != -1U);
assert(path.size() >= 2);
std::reverse(path.begin(), path.end());
assert(path[0] == source);
assert(path.back() == target);
}
void ak::embedded_path(
ak::Parameters const ¶meters,
ak::Model const &model,
ak::EmbeddedVertex const &source,
ak::EmbeddedVertex const &target,
std::vector< ak::EmbeddedVertex > *path_ //out: path; path[0] will be source and path.back() will be target
) {
assert(path_);
auto &path = *path_;
path.clear();
//first do a vertex-to-vertex distance computation to bound the computation:
std::vector< std::vector< uint32_t > > adj(model.vertices.size());
std::unordered_set< glm::uvec2 > edges;
for (auto const &tri : model.triangles) {
auto do_edge = [&](uint32_t a, uint32_t b) {
if (a > b) std::swap(a,b);
edges.insert(glm::uvec2(a,b));
};
do_edge(tri.x, tri.y);
do_edge(tri.y, tri.z);
do_edge(tri.z, tri.x);
}
for (auto const &e : edges) {
adj[e.x].emplace_back(e.y);
adj[e.y].emplace_back(e.x);
}
uint32_t target_idx = target.simplex.x;
std::vector< float > dis(model.vertices.size(), std::numeric_limits< float >::infinity());
std::vector< std::pair< float, std::pair< uint32_t, float > > > todo;
auto queue = [&](uint32_t at, float distance) {
assert(distance < dis[at]);
dis[at] = distance;
float heuristic = glm::length(model.vertices[target_idx] - model.vertices[at]);
todo.emplace_back(std::make_pair(-(heuristic + distance), std::make_pair(at, distance)));
std::push_heap(todo.begin(), todo.end());
};
queue(source.simplex.x, glm::length(source.interpolate(model.vertices) - model.vertices[source.simplex.x]));
while (!todo.empty()) {
std::pop_heap(todo.begin(), todo.end());
uint32_t at = todo.back().second.first;
float distance = todo.back().second.second;
todo.pop_back();
if (distance > dis[at]) continue;
assert(distance == dis[at]);
if (at == target_idx) break; //bail out early -- don't need distances to everything.
for (auto n : adj[at]) {
float d = distance + glm::length(model.vertices[n] - model.vertices[at]);
if (d < dis[n]) queue(n, d);
}
}
//okay, so this is a conservative (long) estimate of path length:
float dis2 = dis[target_idx] + glm::length(target.interpolate(model.vertices) - model.vertices[target_idx]);
dis2 = dis2*dis2;
//come up with a model containing only triangles that might be used in the path:
Model trimmed;
trimmed.vertices.reserve(model.vertices.size());
trimmed.triangles.reserve(model.triangles.size());
std::vector< uint32_t > to_trimmed(model.vertices.size(), -1U);
std::vector< uint32_t > from_trimmed;
from_trimmed.reserve(model.vertices.size());
auto vertex_to_trimmed = [&to_trimmed,&from_trimmed,&trimmed,&model](uint32_t v) {
if (to_trimmed[v] == -1U) {
to_trimmed[v] = trimmed.vertices.size();
from_trimmed.emplace_back(v);
trimmed.vertices.emplace_back(model.vertices[v]);
}
return to_trimmed[v];
};
{ //keep triangles that are close enough to source and target that the path could possible pass through them:
glm::vec3 src = source.interpolate(model.vertices);
glm::vec3 tgt = target.interpolate(model.vertices);
for (auto const &tri : model.triangles) {
glm::vec3 min = glm::min(model.vertices[tri.x], glm::min(model.vertices[tri.y], model.vertices[tri.z]));
glm::vec3 max = glm::max(model.vertices[tri.x], glm::max(model.vertices[tri.y], model.vertices[tri.z]));
float len2_src = glm::length2(glm::max(min, glm::min(max, src)) - src);
float len2_tgt = glm::length2(glm::max(min, glm::min(max, tgt)) - tgt);
if (len2_src + len2_tgt < dis2) {
trimmed.triangles.emplace_back(glm::uvec3(
vertex_to_trimmed(tri.x), vertex_to_trimmed(tri.y), vertex_to_trimmed(tri.z)
));
}
}
}
ak::EmbeddedVertex trimmed_source = source;
trimmed_source.simplex.x = vertex_to_trimmed(trimmed_source.simplex.x);
if (trimmed_source.simplex.y != -1U) trimmed_source.simplex.y = vertex_to_trimmed(trimmed_source.simplex.y);
if (trimmed_source.simplex.z != -1U) trimmed_source.simplex.z = vertex_to_trimmed(trimmed_source.simplex.z);
trimmed_source = ak::EmbeddedVertex::canonicalize(trimmed_source.simplex, trimmed_source.weights);
ak::EmbeddedVertex trimmed_target = target;
trimmed_target.simplex.x = vertex_to_trimmed(trimmed_target.simplex.x);
if (trimmed_target.simplex.y != -1U) trimmed_target.simplex.y = vertex_to_trimmed(trimmed_target.simplex.y);
if (trimmed_target.simplex.z != -1U) trimmed_target.simplex.z = vertex_to_trimmed(trimmed_target.simplex.z);
trimmed_target = ak::EmbeddedVertex::canonicalize(trimmed_target.simplex, trimmed_target.weights);
assert(from_trimmed.size() == trimmed.vertices.size());
/*//DEBUG:
std::cout << "Trimmed has " << trimmed.vertices.size() << " verts and " << trimmed.triangles.size() << " tris." << std::endl;
std::cout << "source on: " << (int)source.simplex.x << ", " << (int)source.simplex.y << ", " << (int)source.simplex.z << std::endl;
std::cout << "trimmed_source on: " << (int)trimmed_source.simplex.x << ", " << (int)trimmed_source.simplex.y << ", " << (int)trimmed_source.simplex.z << std::endl;
std::cout << "target on: " << (int)target.simplex.x << ", " << (int)target.simplex.y << ", " << (int)target.simplex.z << std::endl;
std::cout << "trimmed_target on: " << (int)trimmed_target.simplex.x << ", " << (int)trimmed_target.simplex.y << ", " << (int)trimmed_target.simplex.z << std::endl;
//PARANOIA:
bool found_source = false;
bool found_target = false;
for (auto simplex : trimmed.triangles) {
if (simplex.x > simplex.y) std::swap(simplex.x, simplex.y);
if (simplex.y > simplex.z) std::swap(simplex.y, simplex.z);
if (simplex.x > simplex.y) std::swap(simplex.x, simplex.y);
if (simplex == trimmed_source.simplex) found_source = true;
if (simplex == trimmed_target.simplex) found_target = true;
simplex.z = -1U;
if (simplex == trimmed_source.simplex) found_source = true;
if (simplex == trimmed_target.simplex) found_target = true;
simplex.y = -1U;
if (simplex == trimmed_source.simplex) found_source = true;
if (simplex == trimmed_target.simplex) found_target = true;
}
assert(found_source);
assert(found_target);
*/
embedded_path_simple(
parameters,
trimmed,
trimmed_source,
trimmed_target,
&path);
for (auto &v : path) {
v.simplex.x = from_trimmed[v.simplex.x];
if (v.simplex.y != -1U) v.simplex.y = from_trimmed[v.simplex.y];
if (v.simplex.z != -1U) v.simplex.z = from_trimmed[v.simplex.z];
v = ak::EmbeddedVertex::canonicalize(v.simplex, v.weights);
}
}