forked from meenavyas/Misc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMnistTensorFlowDistributed.py
189 lines (151 loc) · 7.47 KB
/
MnistTensorFlowDistributed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# This is a simplified version of https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/dist_test/python/mnist_replica.py
# Refer to that license before use.
# Also refered https://www.tensorflow.org/deploy/distributed#putting-it-all-together-example-trainer-program
# Running one ps and two worker jobs as shown below:
# python3 DistributedMnistCNNTensorFlowExample.py --job_name="ps" --task_index=0 --ps_hosts=ps0.example.com:2222 --worker_hosts=worker0.example.com:2222,worker1.example.com:2222 &
# python3 DistributedMnistCNNTensorFlowExample.py --job_name="worker" --task_index=0 --ps_hosts=ps0.example.com:2222 --worker_hosts=worker0.example.com:2222,worker1.example.com:2222 &
# python3 DistributedMnistCNNTensorFlowExample.py --job_name="worker" --task_index=1 --ps_hosts=ps0.example.com:2222 --worker_hosts=worker0.example.com:2222,worker1.example.com:2222 &
# To test on a local machine first before deploying on multiple hosts
# By default it sets : --ps_hosts=localhost:2222 --worker_hosts=localhost:2223,localhost:2224
# python3 DistributedMnistCNNTensorFlowExample.py --job_name="ps" --task_index=0 &
# python3 DistributedMnistCNNTensorFlowExample.py --job_name="worker" --task_index=0 &
# python3 DistributedMnistCNNTensorFlowExample.py --job_name="worker" --task_index=1 &
from __future__ import absolute_import, division, print_function
import math
import sys
import tempfile
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
flags = tf.app.flags
flags.DEFINE_string("data_dir", "/tmp/mnist-data",
"Directory for storing mnist data")
flags.DEFINE_integer("task_index", None,
"Worker task index, should be >= 0. task_index=0 is "
"the master worker task the performs the variable "
"initialization ")
flags.DEFINE_integer("num_gpus", 1,
"Total number of gpus for each machine."
"If you don't use GPU, please set it to '0'")
flags.DEFINE_integer("hidden_units", 100,
"Number of units in the hidden layer of the NN")
flags.DEFINE_integer("train_steps", 200,
"Number of (global) training steps to perform")
flags.DEFINE_integer("batch_size", 100, "Training batch size")
flags.DEFINE_float("learning_rate", 0.01, "Learning rate")
flags.DEFINE_string("ps_hosts","localhost:2222",
"Comma-separated list of hostname:port pairs")
flags.DEFINE_string("worker_hosts", "localhost:2223,localhost:2224",
"Comma-separated list of hostname:port pairs")
flags.DEFINE_string("job_name", None,"job name: worker or ps")
FLAGS = flags.FLAGS
IMAGE_PIXELS = 28
def main(unused_argv):
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)
if FLAGS.job_name is None or FLAGS.job_name == "":
raise ValueError("Must specify an explicit `job_name`")
if FLAGS.task_index is None or FLAGS.task_index =="":
raise ValueError("Must specify an explicit `task_index`")
print("job name = %s" % FLAGS.job_name)
print("task index = %d" % FLAGS.task_index)
#Construct the cluster and start the server
ps_spec = FLAGS.ps_hosts.split(",")
worker_spec = FLAGS.worker_hosts.split(",")
# Create a cluster from the parameter server and worker hosts.
cluster = tf.train.ClusterSpec({
"ps": ps_spec,
"worker": worker_spec})
# Create an in-process server.
server = tf.train.Server(cluster,
job_name=FLAGS.job_name,
task_index=FLAGS.task_index)
if FLAGS.job_name == "ps":
server.join()
is_chief = (FLAGS.task_index == 0)
if FLAGS.num_gpus > 0:
# Avoid gpu allocation conflict: now allocate task_num -> #gpu
# for each worker in the corresponding machine
gpu = (FLAGS.task_index % FLAGS.num_gpus)
worker_device = "/job:worker/task:%d/gpu:%d" % (FLAGS.task_index, gpu)
elif FLAGS.num_gpus == 0:
# Just allocate the CPU to worker server
cpu = 0
worker_device = "/job:worker/task:%d/cpu:%d" % (FLAGS.task_index, cpu)
# The device setter will automatically place Variables ops on separate
# parameter servers (ps). The non-Variable ops will be placed on the workers.
with tf.device(tf.train.replica_device_setter(
worker_device=worker_device,
ps_device="/job:ps/cpu:0",
cluster=cluster)):
# Can we use global_step = tf.train.get_or_create_global_step()?
global_step = tf.Variable(0, name="global_step", trainable=False)
# Variables of the hidden layer
hid_w = tf.Variable(
tf.truncated_normal(
[IMAGE_PIXELS * IMAGE_PIXELS, FLAGS.hidden_units],
stddev=1.0 / IMAGE_PIXELS),
name="hid_w")
hid_b = tf.Variable(tf.zeros([FLAGS.hidden_units]), name="hid_b")
# Variables of the softmax layer
sm_w = tf.Variable(
tf.truncated_normal(
[FLAGS.hidden_units, 10],
stddev=1.0 / math.sqrt(FLAGS.hidden_units)),
name="sm_w")
sm_b = tf.Variable(tf.zeros([10]), name="sm_b")
# Ops: located on the worker specified with FLAGS.task_index
x = tf.placeholder(tf.float32, [None, IMAGE_PIXELS * IMAGE_PIXELS])
y_ = tf.placeholder(tf.float32, [None, 10])
hid_lin = tf.nn.xw_plus_b(x, hid_w, hid_b)
hid = tf.nn.relu(hid_lin)
y = tf.nn.softmax(tf.nn.xw_plus_b(hid, sm_w, sm_b))
cross_entropy = -tf.reduce_sum(y_ * tf.log(tf.clip_by_value(y, 1e-10, 1.0)))
opt = tf.train.AdamOptimizer(FLAGS.learning_rate)
train_step = opt.minimize(cross_entropy, global_step=global_step)
init_op = tf.global_variables_initializer()
train_dir = tempfile.mkdtemp()
sv = tf.train.Supervisor(
is_chief=is_chief,
logdir=train_dir,
init_op=init_op,
recovery_wait_secs=1,
global_step=global_step)
sess_config = tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=False,
device_filters=["/job:ps", "/job:worker/task:%d" % FLAGS.task_index])
# The chief worker (task_index==0) session will prepare the session,
# while the remaining workers will wait for the preparation to complete.
if is_chief:
print("Worker %d: Initializing session..." % FLAGS.task_index)
else:
print("Worker %d: Waiting for session to be initialized..." %
FLAGS.task_index)
sess = sv.prepare_or_wait_for_session(server.target, config=sess_config)
print("Worker %d: Session initialization complete." % FLAGS.task_index)
# Perform training
time_begin = time.time()
print("Training begins @ %f" % time_begin)
local_step = 0
while True:
# Training feed
batch_xs, batch_ys = mnist.train.next_batch(FLAGS.batch_size)
train_feed = {x: batch_xs, y_: batch_ys}
_, step = sess.run([train_step, global_step], feed_dict=train_feed)
local_step += 1
now = time.time()
print("%f: Worker %d: training step %d done (global step: %d)" %
(now, FLAGS.task_index, local_step, step))
if step >= FLAGS.train_steps:
break
time_end = time.time()
print("Training ends @ %f" % time_end)
training_time = time_end - time_begin
print("Training elapsed time: %f s" % training_time)
# Validation feed
val_feed = {x: mnist.validation.images, y_: mnist.validation.labels}
val_xent = sess.run(cross_entropy, feed_dict=val_feed)
print("After %d training step(s), validation cross entropy = %g" %
(FLAGS.train_steps, val_xent))
if __name__ == "__main__":
tf.app.run()