-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhelper3.py
492 lines (446 loc) · 16.7 KB
/
helper3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 3 14:45:12 2018
O
@author: huwei
For Part 3-2 maximal marginal likelihood
"""
import numpy as np
from cvxopt import matrix, solvers
# Only for quadratic programming & linear programming
class FeatureTransform(object):
"""
Feature transformation of input X:
* X is input data matrix w/ dim of N by K (np.ndarray);
* degree is the order of polynomial (int);
* interaction is bool:
True if we consider interaction terms
(We only consider the case of degree = 2);
"""
def __init__(self, X, degree = 2, interaction = False):
self.X = X
self.degree = degree
self.interaction = interaction
def ftr_poly_mat(self):
"""
Feature transformation function of polynomial w/o interaction term:
output is matrix of feature transformation of
X w/ dim of K+1 by N (np.ndarray);
"""
if type(self.X[0]) != np.ndarray:
K = 1
else:
K = len(self.X[0])
N = len(self.X)
D = K * self.degree + 1
Phi = np.zeros((D, N))
for j in range(0,N):
temp = [1.0]
for i in range(1,self.degree+1):
temp = np.append(temp, np.power(self.X[j],i))
Phi[:,j] = temp
return Phi
def ftr_inter_mat(self):
"""
Feature transformation function of polynomial w/ interaction only term:
output is matrix of feature transformation of
X w/ dim of K+1 by N (np.ndarray);
"""
if type(self.X[0]) != np.ndarray:
K = 1
else:
K = len(self.X[0])
N = len(self.X)
D = int(1 + K/2.0 + K**2/2.0)
Phi = np.zeros((D, N))
for j in range(0,N):
temp = [1.0]
temp = np.append(temp, self.X[j])
for k in range(0,K):
for l in range(k+1,K):
temp = np.append(temp, self.X[j][k]*self.X[j][l])
Phi[:,j] = temp
return Phi
def Run(self):
if self.interaction == True and self.degree == 2:
Phi = self.ftr_inter_mat()
else:
Phi = self.ftr_poly_mat()
return Phi
class LeastSquare(object):
"""
Least square method:
Phi is input feature matrix w/ dim of D * N (np.ndarray);
Y is the output vector w/ dim of N (np.ndarray);
"""
def __init__(self, Phi, Y):
self.Y = Y
self.Phi = Phi
def para_est(self):
"""
Parameter estimate:
theta is estimated parameters w/ dim D (np.ndarray);
"""
temp = self.Phi @ self.Phi.T
theta = np.linalg.inv(temp) @ self.Phi @ self.Y
self.theta = theta
return theta
def predict(self, new_Phi):
"""
Prediction f_* for input new_Phi:
new_X is input data vector w/ dim of N' (np.ndarray);
f is learned fcn output vector w/ dim of N' (np.ndarray);
"""
f = new_Phi.T @ self.theta
return f
def score(self, new_Phi, true_Y):
"""
Mean Square Error btw learned fcn output and the true fcn outputs:
new_Phi is input feature matrix w/ dim of D * N' (np.ndarray);
true_Y is the true fcn output w/ dim N' (np.ndarray);
MSE is the mean square error, scalar (np.float64);
"""
f = self.predict(new_Phi)
temp = f - true_Y
MSE = sum(temp**2)/len(true_Y)
return MSE
def MAE(self, new_Phi, true_Y):
"""
Mean Absolute Error btw learned fcn output and the true fcn outputs:
new_Phi is input feature matrix w/ dim of D * N' (np.ndarray);
true_Y is the true fcn output w/ dim N' (np.ndarray)
MAE is the mean square error, scalar (np.float64)
"""
f = self.predict(new_Phi)
temp = f - true_Y
MAE = sum(abs(temp))/len(true_Y)
return MAE
class RegularizedLS(object):
"""
Regularized least square method:
Phi is input feature matrix w/ dim of D * N (np.ndarray);
Y is the output vector w/ dim of N (np.ndarray);
lamb is scalar parameter (np.float64);
"""
def __init__(self, Phi, Y, lamb):
self.Y = Y
self.Phi = Phi
self.lamb = lamb
def para_est(self):
"""
Parameter estimate:
theta is estimated parameters w/ dim D (np.ndarray);
"""
D = len(self.Phi)
temp = self.Phi @ self.Phi.T + self.lamb * np.identity(D)
theta = np.linalg.inv(temp) @ self.Phi @ self.Y
self.theta = theta
return theta
def predict(self, new_Phi):
"""
Prediction f_* for input new_Phi:
new_Phi is input feature matrix w/ dim of D * N' (np.ndarray);
f is output data vector w/ dim of N' (np.ndarray)
"""
f = new_Phi.T @ self.theta
return f
def score(self, new_Phi, true_Y):
"""
Mean Square Error btw learned fcn output and the true fcn outputs
new_Phi is input feature matrix w/ dim of D * N' (np.ndarray);
true_Y is the true fcn output w/ dim N' (np.ndarray)
MSE is the mean square error, scalar (np.float64)
"""
f = self.predict(new_Phi)
temp = f - true_Y
MSE = sum(temp**2)/len(true_Y)
return MSE
def MAE(self, new_Phi, true_Y):
"""
Mean Absolute Error btw learned fcn output and the true fcn outputs:
new_Phi is input feature matrix w/ dim of D * N' (np.ndarray);
true_Y is the true fcn output w/ dim N' (np.ndarray)
MAE is the mean square error, scalar (np.float64)
"""
f = self.predict(new_Phi)
temp = f - true_Y
MAE = sum(abs(temp))/len(true_Y)
return MAE
class LASSO(object):
"""
LASSO (least absolute shrinkage and selection operator):
Phi is input feature matrix w/ dim of D * N (np.ndarray);
Y is the output vector w/ dim of N (np.ndarray);
lamb is scalar parameter (np.float64);
"""
def __init__(self, Phi, Y, lamb):
self.Y = Y
self.Phi = Phi
self.lamb = lamb
def para_est(self):
"""
Parameter estimate:
theta is estimated parameters w/ dim D (np.ndarray);
"""
#N = len(X)
D = len(self.Phi)
temp1 = np.concatenate((self.Phi @ self.Phi.T, -self.Phi @ self.Phi.T ),axis = 1)
temp2 = np.concatenate((-self.Phi @ self.Phi.T, self.Phi @ self.Phi.T ),axis = 1)
P = np.concatenate((temp1, temp2), axis = 0)
q = self.lamb * np.ones(2*D) - np.concatenate(([email protected], [email protected]), axis=0)
G = - np.identity(2*D)
h = np.zeros(2*D)
sol = solvers.qp(matrix(P), matrix(q), matrix(G), matrix(h))
theta = np.array(sol['x'][0:D] - sol['x'][D:2*D])
theta = np.concatenate(theta, axis=0)
self.theta = theta
return theta
def predict(self, new_Phi):
"""
Prediction f_* for input new_Phi:
new_Phi is input feature matrix w/ dim of D * N' (np.ndarray);
f is output data vector w/ dim of N' (np.ndarray)
"""
f = new_Phi.T @ self.theta
return f
def score(self, new_Phi, true_Y):
"""
Mean Square Error btw learned fcn output and the true fcn outputs
new_X is input data vector w/ dim of N' (np.ndarray)
true_Y is the true fcn output w/ dim N' (np.ndarray)
MSE is the mean square error, scalar (np.float64)
"""
f = self.predict(new_Phi)
temp = f - true_Y
MSE = sum(temp**2)/len(true_Y)
return MSE
def MAE(self, new_Phi, true_Y):
"""
Mean Absolute Error btw learned fcn output and the true fcn outputs:
new_Phi is input feature matrix w/ dim of D * N' (np.ndarray);
true_Y is the true fcn output w/ dim N' (np.ndarray)
MAE is the mean square error, scalar (np.float64)
"""
f = self.predict(new_Phi)
temp = f - true_Y
MAE = sum(abs(temp))/len(true_Y)
return MAE
class RobustReg(object):
"""
Robust Regression:
Phi is input feature matrix w/ dim of D * N (np.ndarray)
Y is the output vector w/ dim of N (np.ndarray)
"""
def __init__(self, Phi, Y):
self.Y = Y
self.Phi = Phi
def para_est(self):
"""
Parameter estimate:
theta is estimated parameters w/ dim D (np.ndarray);
"""
N = len(self.Y)
D = len(self.Phi)
c = np.concatenate((np.zeros(D),np.ones(N)), axis = 0)
temp1 = np.concatenate((-self.Phi.T, -np.identity(N)), axis = 1)
temp2 = np.concatenate((self.Phi.T, -np.identity(N)), axis = 1)
G = np.concatenate((temp1, temp2),axis = 0)
h = np.concatenate((-self.Y, self.Y), axis = 0)
sol = solvers.lp(matrix(c, (D+N,1)), matrix(G, (2*N, N+D)), matrix(h,(2*N, 1)))
theta = np.array(sol['x'][0:D])
theta = np.concatenate(theta,axis=0)
self.theta = theta
return theta
def predict(self, new_Phi):
"""
Prediction f_* for input new_Phi
new_Phi is input feature matrix w/ dim of D * N' (np.ndarray);
f is output data vector w/ dim of N' (np.ndarray)
"""
f = new_Phi.T @ self.theta
return f
def score(self, new_Phi, true_Y):
"""
Mean Square Error btw learned fcn output and the true fcn outputs:
new_Phi is input feature matrix w/ dim of D * N' (np.ndarray);
true_Y is the true fcn output w/ dim N' (np.ndarray)
MSE is the mean square error, scalar (np.float64)
"""
f = self.predict(new_Phi)
temp = f - true_Y
MSE = sum(temp**2)/len(true_Y)
return MSE
def MAE(self, new_Phi, true_Y):
"""
Mean Absolute Error btw learned fcn output and the true fcn outputs:
new_Phi is input feature matrix w/ dim of D * N' (np.ndarray);
true_Y is the true fcn output w/ dim N' (np.ndarray)
MAE is the mean square error, scalar (np.float64)
"""
f = self.predict(new_Phi)
temp = f - true_Y
MAE = sum(abs(temp))/len(true_Y)
return MAE
class BayesianReg(object):
"""
Bayesian Regression:
Phi is input feature matrix w/ dim of D * N (np.ndarray);
Y is the output vector w/ dim of N (np.ndarray);
parameter theta has normal prior with zero mean,
alpha is the std of normal dist. of theta (np.float64);
Noise of regression has normal dist. w/ zero mean,
sigma is the std of normal dist. of noise (np.float64).
"""
def __init__(self, Phi, Y, alpha, sigma):
self.Y = Y
self.Phi = Phi
self.alpha = alpha
self.sigma = sigma
def para_est(self):
"""
Parameter estimate:
theta is posterior estimated distribution, a vector w/ dim 1,000 (np.ndarray)
Sigma_th is the covirance matrix of distribution of theta w/ dim D by D
mu_th is the mean vector of distribution of theta w/ dim of D
"""
D = len(self.Phi)
I = np.identity(D)
temp = 1.0/self.alpha*I + 1.0 / self.sigma**2 * self.Phi @ self.Phi.T
Sigma_th = np.linalg.inv(temp)
mu_th = 1.0/self.sigma**2 * Sigma_th @ self.Phi @ self.Y
self.Sigma_th = Sigma_th
self.mu_th = mu_th
return mu_th, Sigma_th
def predict(self, new_Phi):
"""
Prediction f_* for input new_Phi
new_Phi is input feature matrix w/ dim of D by N' (np.ndarray)
new_Sigma is the covirance matrix of distribution of
theta w/ dim N' by N' (np.ndarray);
new_mu is the mean vector of distribution of
theta w/ dim of N' (np.ndarray);
"""
new_mu = new_Phi.T @ self.mu_th
new_Sigma = new_Phi.T @ self.Sigma_th @ new_Phi
return new_mu, new_Sigma
def score(self, new_Phi, true_Y):
"""
Mean Square Error btw learned fcn output and the true fcn outputs:
new_Phi is input feature matrix w/ dim of D by N' (np.ndarray)
true_Y is the true fcn output w/ dim N' (np.ndarray)
MSE is the mean square error, scalar (np.float64)
"""
[new_mu,_] = self.predict(new_Phi)
temp = new_mu - true_Y
MSE = sum(temp**2)/len(true_Y)
return MSE
def MAE(self, new_Phi, true_Y):
"""
Mean Absolute Error btw learned fcn output and the true fcn outputs:
new_Phi is input feature matrix w/ dim of D by N' (np.ndarray)
true_Y is the true fcn output w/ dim N' (np.ndarray)
MSE is the mean square error, scalar (np.float64)
"""
[new_mu,_] = self.predict(new_Phi)
temp = new_mu - true_Y
MAE = sum(abs(temp))/len(true_Y)
return MAE
def marginal_likelihood(self):
D = len(self.Phi)
N = len(self.Y)
temp1 = -D*np.log(self.alpha)/2.0-N*np.log(self.sigma**2)/2.0
temp2 = self.Y - self.Phi.T @ self.mu_th
temp3 = -temp2.T @ temp2/(2.0 * self.sigma**2)
temp4 = -self.mu_th.T @ self.mu_th/(2.0*self.alpha)
temp5 = -np.log(np.linalg.det(np.linalg.inv(self.Sigma_th)))/2.0
temp6 = -N*np.log(2*np.pi)/2.0
MLL = temp1+temp3+temp4+temp5+temp6
return MLL
def SelectSubsamp(Sample, percentage):
"""
Selecting subsample from Sample with percentage
Sample is vector w/ dim N (np.ndarray)
"""
np.random.seed(127)
p = int(np.rint(len(Sample)*percentage))
subsamp = np.random.choice(Sample, size = p, replace = False)
return subsamp
class Regression(object):
"""
Five type of Regression Methods:
X is sample input w/ dim of N by K (np.ndarray):
K = 1, if X is a vector;
K >1, if X is a matrix;
Y is the sample output vector w/ dim of N (np.ndarray);
treuX is new sample input w/ dim of N' by K (np.ndarray):
K = 1, if X is a vector;
K >1, if X is a matrix;
Y is the new sample output vector w/ dim of N' (np.ndarray);
lamb_1 is scalar parameter for RLS (np.float64);
lamb_2 is scalar parameter for LASSO (np.float64);
alpha & sigma are scalar parameter for BR (np.float64);
degree is the order of polynomial (int);
interaction is bool:
True if we consider interaction terms
(We only consider the case of degree = 2);
---
"""
def __init__(self, X, Y,
trueX, trueY,
lamb_1, lamb_2,
alpha, sigma,
degree = 2, interaction = False):
self.X = X
self.Y = Y
self.lamb_1 = lamb_1
self.lamb_2 = lamb_2
self.trueX =trueX
self.trueY = trueY
self.sigma = sigma
self.alpha = alpha
self.degree = degree
self.interaction = interaction
def Run(self, method):
"""
"""
Phi_X = FeatureTransform(self.X, self.degree, self.interaction).Run()
Phi_trueX = FeatureTransform(self.trueX, self.degree, self.interaction).Run()
if method == 'LS':
LS = LeastSquare(Phi_X, self.Y)
theta = LS.para_est()
f = LS.predict(Phi_trueX)
MSE = LS.score(Phi_trueX, self.trueY)
MAE = LS.MAE(Phi_trueX, self.trueY)
return theta,f,MSE,MAE
elif method == 'RLS':
RLS = RegularizedLS(Phi_X, self.Y, self.lamb_1)
theta = RLS.para_est()
f = RLS.predict(Phi_trueX)
MSE = RLS.score(Phi_trueX, self.trueY)
MAE = RLS.MAE(Phi_trueX, self.trueY)
return theta,f,MSE,MAE
elif method == 'LASSO':
lass = LASSO(Phi_X, self.Y, self.lamb_2)
theta = lass.para_est()
f = lass.predict(Phi_trueX)
MSE = lass.score(Phi_trueX, self.trueY)
MAE = lass.MAE(Phi_trueX, self.trueY)
return theta,f,MSE,MAE
elif method == 'RR':
RR = RobustReg(Phi_X, self.Y)
theta = RR.para_est()
f = RR.predict(Phi_trueX)
MSE = RR.score(Phi_trueX, self.trueY)
MAE = RR.MAE(Phi_trueX, self.trueY)
return theta,f,MSE,MAE
elif method == 'BR':
BR = BayesianReg(Phi_X, self.Y, self.alpha, self.sigma)
[theta_mu, theta_sigma] = BR.para_est()
[f_mu,f_sigma] = BR.predict(Phi_trueX)
MSE = BR.score(Phi_trueX, self.trueY)
MAE = BR.MAE(Phi_trueX, self.trueY)
MLL = BR.marginal_likelihood()
return theta_mu, theta_sigma,f_mu,f_sigma,MSE,MAE, MLL
else:
print('No such method!!!!')