-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
62 lines (46 loc) · 1.39 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from flask import Flask, render_template
import pandas as pd
import argparse
from main import (
PATH_PREDICTIONS,
file_sample_variance,
)
from frontend import DashboardData
from config_app import (
current_date_formatted,
previous_date_formatted,
file_processed_input,
)
pd.options.mode.chained_assignment = None
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model",
help="type of machine learning model",
choices=["knn", "xgboost"],
default="knn",
)
args = parser.parse_args()
dashboard_object = DashboardData(
path_o_t_1=file_processed_input,
path_pt_1=(PATH_PREDICTIONS / f"{args.model}_{previous_date_formatted}.csv"),
path_pt=(PATH_PREDICTIONS / f"{args.model}_{current_date_formatted}.csv"),
path_variance=file_sample_variance,
)
dashboard_object.read_data()
app = Flask(__name__)
@app.route("/")
def index():
return render_template("index.html")
@app.route("/data.json")
def data():
data_asset = dashboard_object.processing_pipeline()
return DashboardData.write_to_json(PATH_PREDICTIONS / "data.json", data_asset)
@app.after_request
def add_header(response):
response.headers["Cache-Control"] = "no-cache, no-store, must-revalidate"
response.headers["Pragma"] = "no-cache"
response.headers["Expires"] = "0"
return response
if __name__ == "__main__":
app.run(host="0.0.0.0", port=5000, debug=True)