-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcache_model_train.py
317 lines (237 loc) · 11.8 KB
/
cache_model_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import pandas as pd
import utils.dataset as dataset
import random
import utils.dataset
from embed_lstm_32 import ByteEncoder
from embed_lstm_32 import Token
from sklearn.neighbors import KernelDensity
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader
from create_train_dataset import get_miss_dataloader
from torchsummary import summary
import argparse
import os
from torch.utils.tensorboard import SummaryWriter
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def get_bytes(x):
x = x.long()
bytes = torch.zeros(4).to(device)
byte_list = list(x.item().to_bytes(4,byteorder='big'))
for i in range(4):
bytes[i] = torch.tensor(byte_list[i], dtype = torch.long)
return bytes
def get_pred_loss(pred, target, xe_loss):
total_loss = 0
target_batch = torch.zeros(target.shape[0],4, dtype = torch.long)
for i in range(target.shape[0]):
target_batch[i] = get_bytes(target[i]) # convert dec to bytes ( since target is in byte (0-255))
for i in range(4):
logits = pred[i].squeeze(0)
logits = logits
total_loss+=xe_loss(logits,target_batch[:,i])
return total_loss
class Decoder(nn.Module):
def __init__(self, d_in):
super(Decoder,self).__init__()
self.linear1 = nn.Linear(d_in, 10)
self.linear2 = nn.Linear(10, 2)
def forward(self, input):
x = F.relu(self.linear1(input))
x = self.linear2(x)
return x
class Decoder_lstm(nn.Module):
def __init__(self,d_in,d_out):
super(Decoder_lstm,self).__init__()
self.linear1 = nn.Linear(d_in,d_out)
self.linear2 = nn.Linear(d_in,d_out)
self.linear3 = nn.Linear(d_in,d_out)
self.linear4 = nn.Linear(d_in,d_out)
self.temperature = 0.001
def forward(self,x):
x1 = self.linear1(x) #1st byte
x2 = self.linear2(x) #2nd byte
x3 = self.linear3(x) #3rd byte
x4 = self.linear4(x) #4th byte
logits = [x1,x2,x3,x4]
return [ torch.softmax(x/self.temperature , dim=2) for x in logits], logits
class TimeDistributed(nn.Module):
def __init__(self, module, batch_first=False):
super(TimeDistributed, self).__init__()
self.module = module
self.batch_first = batch_first
def forward(self, x):
if len(x.size()) <= 2:
return self.module(x)
# Squash samples and timesteps into a single axis
x_reshape = x.contiguous().view(-1, x.size(-1)) # (samples * timesteps, input_size)
y = self.module(x_reshape)
# We have to reshape Y
if self.batch_first:
y = y.contiguous().view(x.size(0), -1, y.size(-1)) # (samples, timesteps, output_size)
else:
y = y.view(-1, x.size(1), y.size(-1)) # (timesteps, samples, output_size))
return y
def get_bytes_2d(x):
out = torch.zeros((x.shape[0],4) , dtype =torch.long).to(device)
for i in range(x.shape[0]):
out[i] = get_bytes(x[i])
return out
class Encoder(nn.Module):
def __init__(self,emb_size):
super(Encoder,self).__init__()
self.linear = nn.Linear(emb_size*4, emb_size)
def forward(self,x):
x = self.linear(x)
x = torch.sigmoid(x)
return x
class DeepCache(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(DeepCache,self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.emb_size = int(input_size/2)
self.lstm = nn.LSTM(input_size, hidden_size, batch_first = True) #lstm model
self.lstm_decoder = Decoder_lstm(self.hidden_size, self.output_size) # decoder to get address predictions
self.rec_freq_decoder = Decoder((input_size//2)*3) # decoder to get freq and rec
self.embed_encoder = torch.load("checkpoints/byte_encoder_32.pt") # byte -> embedding encoder
for param in self.embed_encoder.parameters():
param.requires_grad = False
self.encoder_mlp = Encoder(int(self.input_size/2)) # 4 byte embeddings -> address embeddings
self.time_distributed_encoder_mlp = TimeDistributed(self.encoder_mlp,batch_first=True) # wrapper function to make encoder time distributed
def get_freq_rec(self, x, dist_vector):
byte_embeddings = []
# multiply predicted probs (with temperature) with embedding matrix to get embeddings in a differentiable manner
for i in range(4):
byte_embeddings.append(torch.matmul(x[i], self.embed_encoder.address_embeddings[i].weight))
final_embedding = torch.cat(byte_embeddings , dim=-1) # concatenate all bytes' embeddings
final_embedding = self.encoder_mlp(final_embedding).squeeze(0) # get address embedding from 4 byte embeddings
final_embedding = final_embedding.float()
dist_vector = dist_vector.float()
final_embedding = torch.cat([final_embedding , dist_vector] , dim=-1) # concatenate address embedding with dist vector
output = self.rec_freq_decoder(final_embedding) # predict freq, rec using MLP
return torch.sigmoid(output)
def get_distribution_vector(self, input):
dist_vector = torch.zeros(input.shape[0],input.shape[2]) # initilise the dist vector
for i in range(input.shape[0]):
kde = KernelDensity() # fit KDE
try :
kde.fit(input[i].detach())
except:
print("i:",i)
print('-----------------------------------')
exit()
n_samples = 200
# sample from distribution and take mean to get estimate of true mean ie. dist vector
random_samples = kde.sample(n_samples)
random_samples = torch.from_numpy(random_samples.astype(float))
dist_vector[i] = torch.mean(random_samples , axis = 0)
return dist_vector
def get_embed_pc(self, address):
b,s,_ = list(address.shape)
embeddings = torch.zeros(b*s,self.emb_size*4).to(device) # initialise the byte embeddings
address =address.view(-1,(address.shape[-1]))
address_bytes = get_bytes_2d(address) # convert input decimal into 4 bytes
for i in range(4) :
temp = self.embed_encoder.pc_embeddings[i](address_bytes[:,i]) # get embeddings of each byte
embeddings[:,i*self.emb_size:(i+1)*self.emb_size] = temp
embeddings = embeddings.view(b,s,self.emb_size*4)
return embeddings
def get_embed_addr(self, address):
b,s,_ = list(address.shape)
embeddings = torch.zeros(b*s,self.emb_size*4) # initialise the byte embeddings
address =address.view(-1,(address.shape[-1])).to(device)
address_bytes = get_bytes_2d(address) # convert input decimal into 4 bytes
for i in range(4) :
temp = self.embed_encoder.address_embeddings[i](address_bytes[:,i]) # get embeddings of each byte
embeddings[:,i*self.emb_size:(i+1)*self.emb_size] = temp
embeddings = embeddings.view(b,s,self.emb_size*4)
return embeddings
def forward(self, input, hidden_cell):
pc = input[:,:,0:1]
address = input[:,:,1:2] # Address value in decimal
pc_embed = self.get_embed_pc(pc) # Convert decimal address to 4 byte embeddings using pretrained embeddings
addr_embed = self.get_embed_addr(address)
# time distributed MLP because we need to apply it on every element of the sequence
embeddings_pc = self.time_distributed_encoder_mlp(pc_embed) # Convert 4byte embedding to a single address embedding using an MLP
embeddings_address = self.time_distributed_encoder_mlp(addr_embed)
embeddings = torch.cat([embeddings_pc,embeddings_address] ,dim=-1)
# get distribution vector using KDE
dist_vector = self.get_distribution_vector(embeddings)
lstm_out, hidden_cell = self.lstm(embeddings, hidden_cell)
probs , logits = self.lstm_decoder(hidden_cell[0]) # get prediction logits and probs
freq_rec = self.get_freq_rec(probs,dist_vector) # get freq and rec estimate from prediced probs and distribution vector
freq = freq_rec[:,0]
rec = freq_rec[:,1]
return [probs , logits , freq , rec]
if __name__=='__main__':
parser = argparse.ArgumentParser(description='Deep Cache')
parser.add_argument('--epochs', type=int, default=2,
help='number of epochs')
parser.add_argument('--batch_size', type=int, default=256,
help='batch_size')
args = parser.parse_args()
if not os.path.exists('checkpoints'):
os.makedirs('checkpoints')
writer = SummaryWriter('runs/deepcache')
n_files = 1
emb_size = 80
window_size = 30
hidden_size = 40
n_bytes = 4
epochs = args.epochs
alpha = 0.33
beta = 0.33
batch_size = args.batch_size
print('Creating Model')
model = DeepCache(input_size=2*emb_size,hidden_size=hidden_size,output_size=256)
model.to(device)
xe_loss = nn.CrossEntropyLoss()
mse_loss = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
print('Loading Data')
dataloader = get_miss_dataloader(batch_size, window_size, n_files)
print('Num_Batches: {}'.format(len(dataloader)))
print('------------------------------------')
best_loss = 1e30
for epoch in range(epochs):
losses = []
i = 0
for (seq,labels) in tqdm(dataloader):
i+=1
optimizer.zero_grad()
hidden_cell = (torch.zeros(1, batch_size, model.hidden_size).to(device), # reinitialise hidden state for each new sample
torch.zeros(1, batch_size, model.hidden_size).to(device))
probs, logits, freq, rec = model(input = seq.to(device),hidden_cell=hidden_cell)
add_target = labels[:,0].to(device)
loss_address = get_pred_loss(logits,add_target, xe_loss) # Cross entropy loss with address predictions
freq_target = labels[:,1].float().to(device)
freq_target = (freq_target - torch.min(freq_target))/(torch.max(freq_target) - torch.min(freq_target))
rec_target = labels[:,2].float().to(device)
rec_target = (rec_target - torch.min(rec_target))/(torch.max(rec_target) - torch.min(rec_target))
freq_address = mse_loss(freq, freq_target) #MSE loss with frequency
rec_address = mse_loss(rec, rec_target) #MSE loss with recency
loss = (alpha)*loss_address + (beta)*freq_address + (1-alpha-beta)*rec_address
loss.backward()
losses.append(loss.item())
# log the running loss
writer.add_scalar('loss/train/', loss.item(), epoch*len(dataloader) + i-1)
writer.add_scalar('loss/address/', loss_address, epoch*len(dataloader) + i-1)
writer.add_scalar('loss/freq/', freq_address, epoch*len(dataloader) + i-1)
writer.add_scalar('loss/rec/', rec_address, epoch*len(dataloader) + i-1)
optimizer.step()
print('Epoch {} with loss: {}'.format(epoch+1,np.mean(losses)))
print('-------------------------')
if np.mean(losses) < best_loss:
best_loss = np.mean(losses)
best_epoch = epoch+1
torch.save(model, 'checkpoints/deep_cache_grep_sigmoid_10.pt')
print('Saved at epoch {} with loss: {}'.format(epoch+1,np.mean(losses)))
print('---------------------')
print('---------------------')
print('Best Epoch: {}'.format(best_epoch))
print('---------------------')