From 6065d966ae2f27e847a540de977894813d1456ab Mon Sep 17 00:00:00 2001 From: Woosuk Kwon Date: Wed, 17 Jul 2024 11:06:24 +0000 Subject: [PATCH] [Misc] Use torch.Tensor for type annotation --- .../cutlass_benchmarks/w8a8_benchmarks.py | 34 +++++++++---------- vllm/worker/worker.py | 2 +- 2 files changed, 18 insertions(+), 18 deletions(-) diff --git a/benchmarks/cutlass_benchmarks/w8a8_benchmarks.py b/benchmarks/cutlass_benchmarks/w8a8_benchmarks.py index 377f8683c021f..234c2c8a1074c 100644 --- a/benchmarks/cutlass_benchmarks/w8a8_benchmarks.py +++ b/benchmarks/cutlass_benchmarks/w8a8_benchmarks.py @@ -20,18 +20,18 @@ # helpers -def to_fp8(tensor: torch.tensor) -> torch.tensor: +def to_fp8(tensor: torch.Tensor) -> torch.Tensor: finfo = torch.finfo(torch.float8_e4m3fn) return torch.round(tensor.clamp( min=finfo.min, max=finfo.max)).to(dtype=torch.float8_e4m3fn) -def to_int8(tensor: torch.tensor) -> torch.tensor: +def to_int8(tensor: torch.Tensor) -> torch.Tensor: return torch.round(tensor.clamp(min=-128, max=127)).to(dtype=torch.int8) def make_rand_tensors(dtype: torch.dtype, m: int, n: int, - k: int) -> Tuple[torch.tensor, torch.tensor]: + k: int) -> Tuple[torch.Tensor, torch.Tensor]: a = torch.randn((m, k), device='cuda') * 5 b = torch.randn((n, k), device='cuda').t() * 5 @@ -47,15 +47,15 @@ def make_rand_tensors(dtype: torch.dtype, m: int, n: int, # impl -def pytorch_mm_impl(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor, - scale_b: torch.tensor, - out_dtype: torch.dtype) -> torch.tensor: +def pytorch_mm_impl(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor, + scale_b: torch.Tensor, + out_dtype: torch.dtype) -> torch.Tensor: return torch.mm(a, b) -def pytorch_fp8_impl(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor, - scale_b: torch.tensor, - out_dtype: torch.dtype) -> torch.tensor: +def pytorch_fp8_impl(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor, + scale_b: torch.Tensor, + out_dtype: torch.dtype) -> torch.Tensor: return torch._scaled_mm(a, b, scale_a=scale_a, @@ -63,9 +63,9 @@ def pytorch_fp8_impl(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor, out_dtype=out_dtype) -def pytorch_fp8_impl_fast_accum(a: torch.tensor, b: torch.tensor, - scale_a: torch.tensor, scale_b: torch.tensor, - out_dtype: torch.dtype) -> torch.tensor: +def pytorch_fp8_impl_fast_accum(a: torch.Tensor, b: torch.Tensor, + scale_a: torch.Tensor, scale_b: torch.Tensor, + out_dtype: torch.dtype) -> torch.Tensor: return torch._scaled_mm(a, b, scale_a=scale_a, @@ -74,15 +74,15 @@ def pytorch_fp8_impl_fast_accum(a: torch.tensor, b: torch.tensor, use_fast_accum=True) -def cutlass_impl(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor, - scale_b: torch.tensor, - out_dtype: torch.dtype) -> torch.tensor: +def cutlass_impl(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor, + scale_b: torch.Tensor, + out_dtype: torch.dtype) -> torch.Tensor: return ops.cutlass_scaled_mm(a, b, scale_a, scale_b, out_dtype=out_dtype) # bench -def bench_fn(a: torch.tensor, b: torch.tensor, scale_a: torch.tensor, - scale_b: torch.tensor, out_dtype: torch.dtype, label: str, +def bench_fn(a: torch.Tensor, b: torch.Tensor, scale_a: torch.Tensor, + scale_b: torch.Tensor, out_dtype: torch.dtype, label: str, sub_label: str, fn: Callable, description: str) -> TMeasurement: min_run_time = 1 diff --git a/vllm/worker/worker.py b/vllm/worker/worker.py index 56d8587f8f010..f3c379d1aa34d 100644 --- a/vllm/worker/worker.py +++ b/vllm/worker/worker.py @@ -105,7 +105,7 @@ def __init__( # initialize_cache. self.cache_engine: List[CacheEngine] # Initialize gpu_cache as embedding models don't initialize kv_caches - self.gpu_cache: Optional[List[List[torch.tensor]]] = None + self.gpu_cache: Optional[List[List[torch.Tensor]]] = None def init_device(self) -> None: if self.device_config.device.type == "cuda":