-
Notifications
You must be signed in to change notification settings - Fork 259
/
Copy pathutils.py
158 lines (142 loc) · 6.23 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import tensorflow as tf
import numpy as np
import os
from numpy import genfromtxt
from keras.layers import Conv2D, ZeroPadding2D, Activation, Input, concatenate
from keras.models import Model
from keras.layers.normalization import BatchNormalization
from keras.layers.pooling import MaxPooling2D, AveragePooling2D
_FLOATX = 'float32'
def variable(value, dtype=_FLOATX, name=None):
v = tf.Variable(np.asarray(value, dtype=dtype), name=name)
_get_session().run(v.initializer)
return v
def shape(x):
return x.get_shape()
def square(x):
return tf.square(x)
def zeros(shape, dtype=_FLOATX, name=None):
return variable(np.zeros(shape), dtype, name)
def concatenate(tensors, axis=-1):
if axis < 0:
axis = axis % len(tensors[0].get_shape())
return tf.concat(axis, tensors)
def LRN2D(x):
return tf.nn.lrn(x, alpha=1e-4, beta=0.75)
def conv2d_bn(
x,
layer=None,
cv1_out=None,
cv1_filter=(1, 1),
cv1_strides=(1, 1),
cv2_out=None,
cv2_filter=(3, 3),
cv2_strides=(1, 1),
padding=None,
):
num = '' if cv2_out == None else '1'
tensor = Conv2D(cv1_out, cv1_filter, strides=cv1_strides, name=layer+'_conv'+num)(x)
tensor = BatchNormalization(axis=3, epsilon=0.00001, name=layer+'_bn'+num)(tensor)
tensor = Activation('relu')(tensor)
if padding == None:
return tensor
tensor = ZeroPadding2D(padding=padding)(tensor)
if cv2_out == None:
return tensor
tensor = Conv2D(cv2_out, cv2_filter, strides=cv2_strides, name=layer+'_conv'+'2')(tensor)
tensor = BatchNormalization(axis=3, epsilon=0.00001, name=layer+'_bn'+'2')(tensor)
tensor = Activation('relu')(tensor)
return tensor
weights = [
'conv1', 'bn1', 'conv2', 'bn2', 'conv3', 'bn3',
'inception_3a_1x1_conv', 'inception_3a_1x1_bn',
'inception_3a_pool_conv', 'inception_3a_pool_bn',
'inception_3a_5x5_conv1', 'inception_3a_5x5_conv2', 'inception_3a_5x5_bn1', 'inception_3a_5x5_bn2',
'inception_3a_3x3_conv1', 'inception_3a_3x3_conv2', 'inception_3a_3x3_bn1', 'inception_3a_3x3_bn2',
'inception_3b_3x3_conv1', 'inception_3b_3x3_conv2', 'inception_3b_3x3_bn1', 'inception_3b_3x3_bn2',
'inception_3b_5x5_conv1', 'inception_3b_5x5_conv2', 'inception_3b_5x5_bn1', 'inception_3b_5x5_bn2',
'inception_3b_pool_conv', 'inception_3b_pool_bn',
'inception_3b_1x1_conv', 'inception_3b_1x1_bn',
'inception_3c_3x3_conv1', 'inception_3c_3x3_conv2', 'inception_3c_3x3_bn1', 'inception_3c_3x3_bn2',
'inception_3c_5x5_conv1', 'inception_3c_5x5_conv2', 'inception_3c_5x5_bn1', 'inception_3c_5x5_bn2',
'inception_4a_3x3_conv1', 'inception_4a_3x3_conv2', 'inception_4a_3x3_bn1', 'inception_4a_3x3_bn2',
'inception_4a_5x5_conv1', 'inception_4a_5x5_conv2', 'inception_4a_5x5_bn1', 'inception_4a_5x5_bn2',
'inception_4a_pool_conv', 'inception_4a_pool_bn',
'inception_4a_1x1_conv', 'inception_4a_1x1_bn',
'inception_4e_3x3_conv1', 'inception_4e_3x3_conv2', 'inception_4e_3x3_bn1', 'inception_4e_3x3_bn2',
'inception_4e_5x5_conv1', 'inception_4e_5x5_conv2', 'inception_4e_5x5_bn1', 'inception_4e_5x5_bn2',
'inception_5a_3x3_conv1', 'inception_5a_3x3_conv2', 'inception_5a_3x3_bn1', 'inception_5a_3x3_bn2',
'inception_5a_pool_conv', 'inception_5a_pool_bn',
'inception_5a_1x1_conv', 'inception_5a_1x1_bn',
'inception_5b_3x3_conv1', 'inception_5b_3x3_conv2', 'inception_5b_3x3_bn1', 'inception_5b_3x3_bn2',
'inception_5b_pool_conv', 'inception_5b_pool_bn',
'inception_5b_1x1_conv', 'inception_5b_1x1_bn',
'dense_layer'
]
conv_shape = {
'conv1': [64, 3, 7, 7],
'conv2': [64, 64, 1, 1],
'conv3': [192, 64, 3, 3],
'inception_3a_1x1_conv': [64, 192, 1, 1],
'inception_3a_pool_conv': [32, 192, 1, 1],
'inception_3a_5x5_conv1': [16, 192, 1, 1],
'inception_3a_5x5_conv2': [32, 16, 5, 5],
'inception_3a_3x3_conv1': [96, 192, 1, 1],
'inception_3a_3x3_conv2': [128, 96, 3, 3],
'inception_3b_3x3_conv1': [96, 256, 1, 1],
'inception_3b_3x3_conv2': [128, 96, 3, 3],
'inception_3b_5x5_conv1': [32, 256, 1, 1],
'inception_3b_5x5_conv2': [64, 32, 5, 5],
'inception_3b_pool_conv': [64, 256, 1, 1],
'inception_3b_1x1_conv': [64, 256, 1, 1],
'inception_3c_3x3_conv1': [128, 320, 1, 1],
'inception_3c_3x3_conv2': [256, 128, 3, 3],
'inception_3c_5x5_conv1': [32, 320, 1, 1],
'inception_3c_5x5_conv2': [64, 32, 5, 5],
'inception_4a_3x3_conv1': [96, 640, 1, 1],
'inception_4a_3x3_conv2': [192, 96, 3, 3],
'inception_4a_5x5_conv1': [32, 640, 1, 1,],
'inception_4a_5x5_conv2': [64, 32, 5, 5],
'inception_4a_pool_conv': [128, 640, 1, 1],
'inception_4a_1x1_conv': [256, 640, 1, 1],
'inception_4e_3x3_conv1': [160, 640, 1, 1],
'inception_4e_3x3_conv2': [256, 160, 3, 3],
'inception_4e_5x5_conv1': [64, 640, 1, 1],
'inception_4e_5x5_conv2': [128, 64, 5, 5],
'inception_5a_3x3_conv1': [96, 1024, 1, 1],
'inception_5a_3x3_conv2': [384, 96, 3, 3],
'inception_5a_pool_conv': [96, 1024, 1, 1],
'inception_5a_1x1_conv': [256, 1024, 1, 1],
'inception_5b_3x3_conv1': [96, 736, 1, 1],
'inception_5b_3x3_conv2': [384, 96, 3, 3],
'inception_5b_pool_conv': [96, 736, 1, 1],
'inception_5b_1x1_conv': [256, 736, 1, 1],
}
def load_weights():
# Set weights path
dirPath = './weights'
fileNames = filter(lambda f: not f.startswith('.'), os.listdir(dirPath))
paths = {}
weights_dict = {}
for n in fileNames:
paths[n.replace('.csv', '')] = dirPath + '/' + n
for name in weights:
if 'conv' in name:
conv_w = genfromtxt(paths[name + '_w'], delimiter=',', dtype=None)
conv_w = np.reshape(conv_w, conv_shape[name])
conv_w = np.transpose(conv_w, (2, 3, 1, 0))
conv_b = genfromtxt(paths[name + '_b'], delimiter=',', dtype=None)
weights_dict[name] = [conv_w, conv_b]
elif 'bn' in name:
bn_w = genfromtxt(paths[name + '_w'], delimiter=',', dtype=None)
bn_b = genfromtxt(paths[name + '_b'], delimiter=',', dtype=None)
bn_m = genfromtxt(paths[name + '_m'], delimiter=',', dtype=None)
bn_v = genfromtxt(paths[name + '_v'], delimiter=',', dtype=None)
weights_dict[name] = [bn_w, bn_b, bn_m, bn_v]
elif 'dense' in name:
dense_w = genfromtxt(dirPath+'/dense_w.csv', delimiter=',', dtype=None)
dense_w = np.reshape(dense_w, (128, 736))
dense_w = np.transpose(dense_w, (1, 0))
dense_b = genfromtxt(dirPath+'/dense_b.csv', delimiter=',', dtype=None)
weights_dict[name] = [dense_w, dense_b]
return weights_dict