forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfrozen_concat_linear.cpp
257 lines (219 loc) · 8.22 KB
/
frozen_concat_linear.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#include <c10/util/irange.h>
#include <torch/csrc/jit/ir/alias_analysis.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/ir_views.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/frozen_concat_linear.h>
#include <torch/csrc/jit/passes/frozen_conv_folding.h>
#include <torch/csrc/jit/passes/frozen_graph_optimizations.h>
#include <torch/csrc/jit/passes/remove_dropout.h>
#include <torch/csrc/jit/passes/utils/optimization_utils.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/cat.h>
#endif
#include <unordered_set>
#include <utility>
#include <vector>
namespace torch::jit {
namespace {
using Tensor = at::Tensor;
class ConcatLinearLayers {
public:
explicit ConcatLinearLayers(std::shared_ptr<Graph> graph)
: graph_(std::move(graph)) {}
bool run() {
handleBlockAndSubblocks(graph_->block());
return graph_modified;
}
AliasDb* getAliasDb() {
if (!aliasDb_) {
aliasDb_ = std::make_unique<AliasDb>(graph_);
}
return aliasDb_.get();
}
void collectConstantLinearLayers(
Block* b,
std::unordered_map<Value*, std::vector<Node*>>& grouped_linear_layers,
std::vector<Value*>& ordered_tensor_inputs) {
// We are using an ordered list so that we only have to
// check if moving items forward is a valid move, not
// backwards. Otherwise we need to rebuild the aliasDb when we add values.
for (Node* n : b->nodes()) {
// Grouping together all linear layers that use the same Tensor for input
if (n->kind() != aten::linear) {
continue;
}
auto weight = n->namedInput("weight");
auto bias = n->namedInput("bias");
if (weight->type() == NoneType::get() ||
bias->type() == NoneType::get()) {
continue;
}
if (nonConstantParameters(n)) {
continue;
}
auto weight_tensor = constant_as<Tensor>(weight).value();
if (!weight_tensor.device().is_cuda()) {
continue;
}
Value* linear_input = n->inputs().at(0);
if (grouped_linear_layers.find(linear_input) ==
grouped_linear_layers.cend()) {
grouped_linear_layers.insert({linear_input, std::vector<Node*>()});
ordered_tensor_inputs.push_back(linear_input);
}
grouped_linear_layers.find(linear_input)->second.push_back(n);
}
}
void mergeLinearLayers(std::vector<Node*>& compatible_layers) {
graph_modified = true;
assert(!compatible_layers.empty());
Node* base_node = compatible_layers[0];
// Scope needed to make sure we free the WithInsertPoint guard
// and reset the insert point before we delete `base_node`
Node* linear_node = nullptr;
{
WithInsertPoint guard(base_node);
auto weight_list = c10::fmap(compatible_layers, [](Node* n) {
return constant_as<Tensor>(n->namedInput("weight")).value();
});
Tensor cat_weight = at::cat(weight_list, /*dim=*/0);
Value* cat_weight_value = graph_->insertConstant(std::move(cat_weight));
auto bias_list = c10::fmap(compatible_layers, [](Node* n) {
return constant_as<Tensor>(n->namedInput("bias")).value();
});
Tensor cat_bias = at::cat(bias_list, /*dim=*/0);
Value* cat_bias_value = graph_->insertConstant(std::move(cat_bias));
auto tensor_input = base_node->inputs().at(0);
std::vector<Value*> linear_in = {
tensor_input, cat_weight_value, cat_bias_value};
linear_node = graph_->create(aten::linear, linear_in);
linear_node->insertBefore(base_node);
}
// Update the outputs of the nodes
WithInsertPoint guard2(linear_node);
Value* neg1 = graph_->insertConstant(-1);
Value* one = graph_->insertConstant(1);
int64_t slice_start = 0;
Value* slice_start_val = graph_->insertConstant(0);
for (Node* orig_node : compatible_layers) {
// for each node in the compatible_layers list,
// slide the output of the combined linear layer
// and use it instead of the output of the original node
Tensor weight_tensor =
constant_as<Tensor>(orig_node->namedInput("weight")).value();
int64_t slice_end = slice_start + weight_tensor.size(0);
Value* slice_end_val = graph_->insertConstant(slice_end);
Node* slice = graph_->create(
aten::slice,
{linear_node->output(), neg1, slice_start_val, slice_end_val, one});
slice->insertAfter(linear_node);
orig_node->replaceAllUsesWith(slice);
orig_node->destroy();
slice_start = slice_end;
slice_start_val = slice_end_val;
}
}
bool isNonZeroDimEqual(Tensor& tensor_a, Tensor& tensor_b) {
if (tensor_a.dim() != tensor_b.dim()) {
return false;
}
for (int64_t i = 1; i < tensor_a.dim(); i++) {
if (tensor_a.size(i) != tensor_b.size(i)) {
return false;
}
}
return true;
}
// Check the linear_layer_group of a tensor to find ones that can be
// combined
void collectAndMergeLinearLayers(std::vector<Node*>& linear_layer_group) {
std::unordered_set<Node*> checked_nodes;
for (size_t i = 0; i < linear_layer_group.size(); i++) {
Node* base_node = linear_layer_group[i];
if (checked_nodes.count(base_node) != 0) {
continue;
}
std::vector<Node*> compatible_layers;
compatible_layers.push_back(base_node);
auto base_weight =
constant_as<Tensor>(base_node->namedInput("weight")).value();
auto base_bias =
constant_as<Tensor>(base_node->namedInput("bias")).value();
// Now iterate over the rest of the users of the set to
// see if there is anything that we can coalesce `base_node` with.
for (size_t j = i + 1; j < linear_layer_group.size(); j++) {
auto node = linear_layer_group[j];
if (checked_nodes.count(node) != 0) {
continue;
}
auto weight = constant_as<Tensor>(node->namedInput("weight")).value();
auto bias = constant_as<Tensor>(node->namedInput("bias")).value();
// For now we will just keep it simple and require matching types
// Type promotion might cause performance to actually decrease.
if (base_weight.dtype() != weight.dtype() ||
base_weight.device() != weight.device() ||
base_bias.dtype() != bias.dtype() ||
base_bias.device() != bias.device()) {
continue;
}
if (!isNonZeroDimEqual(base_weight, weight) ||
!isNonZeroDimEqual(base_bias, bias)) {
continue;
}
bool can_move_before_all = true;
for (auto n : compatible_layers) {
can_move_before_all &=
getAliasDb()->couldMoveBeforeTopologically(node, n);
}
if (!can_move_before_all) {
continue;
}
// Found a node that is eligible for combination
compatible_layers.push_back(node);
checked_nodes.insert(node);
}
if (compatible_layers.size() == 1) {
continue; // No other layers to merge
}
mergeLinearLayers(compatible_layers);
}
}
void handleBlockAndSubblocks(Block* block) {
for (auto node : block->nodes()) {
for (Block* subblock : node->blocks()) {
handleBlockAndSubblocks(subblock);
}
}
// Processing for the block itself
std::unordered_map<Value*, std::vector<Node*>> grouped_linear_layers;
std::vector<Value*> ordered_tensor_inputs;
collectConstantLinearLayers(
block, grouped_linear_layers, ordered_tensor_inputs);
// Reverse topological ordering is used to prevent the need to
// update the aliasDB
for (auto tensor_it = ordered_tensor_inputs.rbegin();
tensor_it != ordered_tensor_inputs.rend();
++tensor_it) {
collectAndMergeLinearLayers(grouped_linear_layers.at(*tensor_it));
}
}
private:
std::shared_ptr<Graph> graph_;
bool graph_modified = false;
std::unique_ptr<AliasDb> aliasDb_ = nullptr;
};
} // namespace
TORCH_API bool FrozenConcatLinear(std::shared_ptr<Graph>& graph) {
ConcatLinearLayers concatLayers(graph);
GRAPH_DUMP("Before FrozenConcatLinear", graph);
bool changed = concatLayers.run();
if (changed) {
GRAPH_DUMP("After FrozenConcatLinear", graph);
}
return changed;
}
} // namespace torch::jit