forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinline_forked_closures.cpp
84 lines (74 loc) · 3.03 KB
/
inline_forked_closures.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
#include <torch/csrc/jit/passes/inline_forked_closures.h>
#include <torch/csrc/jit/frontend/ir_emitter.h>
namespace torch::jit {
// Closure nodes are emitted as a tuple of (function %, context tuple %)
// Inside the closure the closure is then unpacked so that all closed over
// values are set. A function closing over a and b would look like:
// def foo(context):
// a, b = context
//
// To fork the closure, we need to set each value in the context tuple
// as an explicit input to the fork node, and then within the closure
// subgraph, replace the context unpacking value with the new graph input.
// fork(foo) ->
// def foo(a, b):
static void inlineForkedClosure(Node* fork_closure, NodeKind genKind) {
Node* function_context_node = fork_closure->input()->node();
if (function_context_node->inputs().size() != 2 ||
function_context_node->inputs().at(0)->node()->kind() != prim::Closure ||
function_context_node->inputs().at(1)->node()->kind() !=
prim::TupleConstruct) {
throw ErrorReport(fork_closure->sourceRange()) << "Cannot fork this value";
}
Node* function = function_context_node->inputs().at(0)->node();
Node* context = function_context_node->inputs().at(1)->node();
auto fork_graph = function->g(attr::Subgraph)->copy();
auto g = fork_closure->owningGraph();
Node* fork_node = g->create(genKind, 1)
->insertAfter(fork_closure)
->setSourceRange(fork_closure->sourceRange());
if (fork_graph->inputs().size() != 1 ||
!fork_graph->inputs().at(0)->type()->cast<TupleType>()) {
throw ErrorReport(fork_node->sourceRange())
<< "Cannot fork lambda with parameters";
}
auto fork_graph_context = fork_graph->inputs().at(0);
AT_ASSERT(fork_graph_context->uses().size() == 1);
auto fork_graph_unpack = fork_graph_context->uses().at(0).user;
for (size_t i = 0; i < context->inputs().size(); ++i) {
auto cont_input = context->inputs().at(i);
fork_node->addInput(cont_input);
auto inp = fork_graph->insertInput(i)->copyMetadata(cont_input);
fork_graph_unpack->outputs().at(i)->replaceAllUsesWith(inp);
}
fork_graph_unpack->destroy();
fork_graph->eraseInput(fork_graph->inputs().size() - 1);
fork_node->output()->copyMetadata(fork_closure->output());
fork_closure->output()->replaceAllUsesWith(fork_node->output());
fork_closure->destroy();
fork_node->g_(attr::Subgraph, fork_graph);
runCleanupPasses(fork_graph);
}
static void inlineForkedClosures(Block* block) {
for (auto it = block->nodes().begin(); it != block->nodes().end();) {
Node* n = *it;
it++;
switch (n->kind()) {
case prim::forkClosure: {
inlineForkedClosure(n, prim::fork);
} break;
case prim::awaitableClosure: {
inlineForkedClosure(n, prim::awaitable);
} break;
default: {
for (Block* b : n->blocks()) {
inlineForkedClosures(b);
}
} break;
}
}
}
void inlineForkedClosures(std::shared_ptr<Graph>& to_clean) {
inlineForkedClosures(to_clean->block());
}
} // namespace torch::jit