-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmasking_generator.py
48 lines (42 loc) · 1.75 KB
/
masking_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
# Tube masking generator
class TubeMaskingGenerator:
def __init__(self, input_size, mask_ratio):
self.frames, self.height, self.width = input_size
self.num_patches_per_frame = self.height * self.width
self.total_patches = self.frames * self.num_patches_per_frame
self.num_masks_per_frame = int(mask_ratio * self.num_patches_per_frame)
self.total_masks = self.frames * self.num_masks_per_frame
def __repr__(self):
repr_str = "Maks: total patches {}, mask patches {}".format(
self.total_patches, self.total_masks
)
return repr_str
def __call__(self):
mask_per_frame = np.hstack([
np.zeros(self.num_patches_per_frame - self.num_masks_per_frame),
np.ones(self.num_masks_per_frame),
])
np.random.shuffle(mask_per_frame)
mask = np.tile(mask_per_frame, (self.frames,1)).flatten()
return mask
# Random masking generator
class RandomMaskingGenerator:
def __init__(self, input_size, mask_ratio):
self.frames, self.height, self.width = input_size
self.num_patches_per_frame = self.height * self.width
self.total_patches = self.frames * self.num_patches_per_frame
self.num_masks_per_frame = int(mask_ratio * self.num_patches_per_frame)
self.total_masks = self.frames * self.num_masks_per_frame
def __repr__(self):
repr_str = "Maks: total patches {}, mask patches {}".format(
self.total_patches, self.total_masks
)
return repr_str
def __call__(self):
mask = np.hstack([
np.zeros(self.total_patches - self.total_masks),
np.ones(self.total_masks),
])
np.random.shuffle(mask)
return mask