-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
130 lines (101 loc) · 3.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/env python3
"""Training script for
- Generating conv. kernels
- Training ridge classifiers
- Exporting kernels and classifiers
"""
import pathlib
import logging
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report
from HAR import CSIActivityRecognitionPipeline
from HAR.io import load_dataset
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class CSIHARGym:
# Constants for activity detection
ACTIVITY_CLASSES = ["idle", "walk", "jump"]
# Constants for classifier
N_KERNELS = 500
N_CLASSES = len(ACTIVITY_CLASSES)
def __init__(self, main_set, hold_set, train_size, params_dest) -> None:
self.main_set = main_set
self.hold_set = hold_set
self.train_size = train_size
self.params_dest = pathlib.Path(params_dest)
self.params_dest.mkdir(parents=True, exist_ok=True)
self.pipe = CSIActivityRecognitionPipeline(
n_classes=len(self.ACTIVITY_CLASSES),
n_kernels=self.N_KERNELS,
batch_size=64,
normalize_input=True,
show_progress=True,
)
def run(self):
X_train, X_test, y_train, y_test = self._load_splits(
self.main_set, self.train_size
)
print("> Training phase")
self._train(X_train, y_train)
print("> Testing phase 1")
self._test(X_test, y_test)
X, _, y, _ = self._load_splits(self.hold_set, None)
print("> Testing phase 2")
self._test(X, y)
self.pipe.save(self.params_dest)
def _load_splits(self, dataset, train_size):
X, y, _, _, dim = load_dataset(dataset)
X = X.reshape(X.shape[0], *dim)
if train_size is None:
return X, _, y, _
return train_test_split(X, y, train_size=train_size, stratify=y)
def _train(self, X, y):
self.pipe.fit_transform(X, y)
def _test(self, X, y):
y_pred = self.pipe.predict(X)
print(f"\n> Test Accuracy: {accuracy_score(y, y_pred)*100:.4f}%")
print("\n> Confusion Matrix: ")
print(confusion_matrix(y, y_pred))
print("\n> Classification Report :")
print(classification_report(y, y_pred, target_names=self.ACTIVITY_CLASSES))
def main(args):
har = CSIHARGym(args.main_set, args.hold_set, args.train_size, args.dump)
har.run()
if __name__ == "__main__":
import argparse
def between_zero_and_one(value):
fvalue = float(value)
if fvalue < 0 or fvalue > 1:
raise argparse.ArgumentTypeError(f"{value} is not between 0 and 1")
return fvalue
parser = argparse.ArgumentParser(description="CSI HAR training")
parser.add_argument(
"--main-set",
help="Dataset used to train and test (phase 1)",
type=str,
required=True,
)
parser.add_argument(
"--hold-set",
help="Dataset used to test (phase 2)",
type=str,
required=True,
)
parser.add_argument(
"--train-size",
help="Fraction of main set to use for training",
type=between_zero_and_one,
default=0.8,
)
parser.add_argument(
"--dump",
help="Destination dir to dump trained parameters",
type=str,
required=True,
)
args = parser.parse_args()
try:
main(args)
except KeyboardInterrupt:
logger.error("Terminated")
pass