From e18082cd6a59f0c2452878a5a821b72b4b066ee2 Mon Sep 17 00:00:00 2001 From: Ted Mansell <37668594+MicroTed@users.noreply.github.com> Date: Tue, 23 Jan 2024 12:14:34 -0600 Subject: [PATCH] Add 3-moment option to NSSL microphysics (plus other minor scheme updates) (#1876) TYPE: enhancement KEYWORDS: microphysics, NSSL scheme SOURCE: Ted Mansell (NOAA/NSSL) (MicroTed) DESCRIPTION OF CHANGES: 3-moment bulk microphysics provides more accurate size-sorting of fast-falling hydrometeors (rain, graupel, hail) by effectively predicting the shape parameter of the gamma function particle size distribution. Also various updates to increase run-time flexibility, for example, it is now possible to predict CCN concentration but have hail turned off. Some bug fixes and changes in default settings, as well. The previous mp_physics options (17,19,21,22) still work as expected, but can be replicated with mp_physics=18 plus new namelist options. A new README.NSSLmp gives an overview of the scheme and tips on usage and some details on an internal namelist for setting additional options within the module. The 5th-order WENO advection (module_advect_em.F) has a decreased 'epsilon' value (1.d-40) to accommodate the order of magnitude of reflectivity moments. This should not noticeably affect scalar advection but will cause round-off differences. Another change fixes an NSSL-MP bug where sedimentation did not work for k > 128 (i.e., if number of model levels exceeds 128, sedimentation only worked for k <= 128). LIST OF MODIFIED FILES: Registry/Registry.EM_COMMON Registry/registry.var Registry/wrfplus chem/chemics_init.F dyn_em/module_advect_em.F dyn_em/solve_em.F dyn_em/start_em.F phys/module_microphysics_driver.F phys/module_mp_nssl_2mom.F phys/module_physics_init.F phys/module_diagnostics_driver.F phys/module_diag_nwp.F wrftladj/module_microphysics_driver_ad.F wrftladj/module_microphysics_driver_tl.F run/README.namelist share/module_check_a_mundo.F doc/README.NSSLmp (new file) TESTS CONDUCTED: It passed the regression tests. RELEASE NOTE: Adds 3-moment option to NSSL microphysics scheme (for rain, graupel, and hail) (mp_physics=18). Changes to snow aggregation parameters reduce stratiform reflectivity bias. Also adds namelist options to enable/disable bulk CCN prediction and graupel/hail density prediction, and deprecates old mp_physics options (17, 19, 21, 22). Main default parameter changes are for graupel/hail fall speed options (icdx, icdxhl; changed from 3 to 6), and default maximum gr/hail droplet collection efficiencies (ehw0/ehlw0 changed from 0.5/0.75 to 0.9/0.9) See README.NSSLmp for details. Also fixes a problem for high resolution vertical domains with nz > 128, where hydrometeor sedimentation did not work at k > 128 (this bug affected most or all previous releases). --- Registry/Registry.EM_COMMON | 70 +- Registry/registry.var | 15 +- Registry/registry.wrfplus | 6 +- chem/chemics_init.F | 4 +- doc/README.NSSLmp | 165 + dyn_em/module_advect_em.F | 4 +- dyn_em/solve_em.F | 7 +- dyn_em/start_em.F | 18 +- phys/module_diag_nwp.F | 33 +- phys/module_diagnostics_driver.F | 64 +- phys/module_microphysics_driver.F | 312 +- phys/module_mp_nssl_2mom.F | 6067 +++++++++++++++++++--- phys/module_physics_init.F | 126 +- run/README.namelist | 35 +- share/module_check_a_mundo.F | 101 +- wrftladj/module_microphysics_driver_ad.F | 4 +- wrftladj/module_microphysics_driver_tl.F | 4 +- 17 files changed, 5821 insertions(+), 1214 deletions(-) create mode 100644 doc/README.NSSLmp diff --git a/Registry/Registry.EM_COMMON b/Registry/Registry.EM_COMMON index 3e0231ff29..5f7b2ab833 100644 --- a/Registry/Registry.EM_COMMON +++ b/Registry/Registry.EM_COMMON @@ -543,6 +543,12 @@ state real qvolg ikjftb scalar 1 - \ i0rhusdf=(bdy_interp:dt) "QVGRAUPEL" "Graupel Particle Volume" "m(3) kg(-1)" state real qvolh ikjftb scalar 1 - \ i0rhusdf=(bdy_interp:dt) "QVHAIL" "Hail Particle Volume" "m(3) kg(-1)" +state real qzr ikjftb scalar 1 - \ + i0rhusdf=(bdy_interp:dt) "QZRAIN" "Sixth moment rain" "m(6) kg(-1)" +state real qzg ikjftb scalar 1 - \ + i0rhusdf=(bdy_interp:dt) "QZGRAUPEL" "Sixth moment graupel" "m(6) kg(-1)" +state real qzh ikjftb scalar 1 - \ + i0rhusdf=(bdy_interp:dt) "QZHAIL" "Sixth moment hail" "m(6) kg(-1)" state real qrimef ikjftb scalar 1 - \ i0rhusdf=(bdy_interp:dt) "QRIMEF" "rime factor * qi" "kg kg-1" state real qir ikjftb scalar 1 - \ @@ -591,6 +597,12 @@ state real dfi_qnn ikjftb dfi_scalar 1 - \ rusdf=(bdy_interp:dt) "DFI_QNCC" "DFI CNN Number concentration" "# kg(-1)" state real dfi_qnc ikjftb dfi_scalar 1 - \ rusdf=(bdy_interp:dt) "DFI_QNCLOUD" "DFI Cloud Number concentration" "# kg(-1)" +state real dfi_qzr ikjftb dfi_scalar 1 - \ + rhusdf=(bdy_interp:dt) "DFI_QZRAIN" "DFI Rain Reflectivity" "m(6) kg(-1)" +state real dfi_qzg ikjftb dfi_scalar 1 - \ + rhusdf=(bdy_interp:dt) "DFI_QZGRAUPEL" "DFI Graupel Reflectivity" "m(6) kg(-1)" +state real dfi_qzh ikjftb dfi_scalar 1 - \ + rhusdf=(bdy_interp:dt) "DFI_QZHAIL" "DFI Hail Reflectivity" "m(6) kg(-1)" state real dfi_qvolg ikjftb dfi_scalar 1 - \ rhusdf=(bdy_interp:dt) "DFI_QVGRAUPEL" "DFI Graupel Particle Volume" "m(3) kg(-1)" state real dfi_qvolh ikjftb dfi_scalar 1 - \ @@ -2385,16 +2397,27 @@ rconfig logical write_thompson_tables namelist,physics 1 .tru rconfig logical write_thompson_mp38table namelist,physics 1 .false. rconfig integer mp_physics namelist,physics max_domains -1 irh "mp_physics" "" "" #rconfig integer milbrandt_ccntype namelist,physics max_domains 0 rh "milbrandt select maritime(1)/continental(2)" "" "" -rconfig real nssl_cccn namelist,physics max_domains 0.5e9 rh "Base CCN concentration for NSSL microphysics" "" "" -rconfig real nssl_alphah namelist,physics max_domains 0 rh "Graupel PSD shape paramter" "" "" -rconfig real nssl_alphahl namelist,physics max_domains 1 rh "Hail PSD shape paramter" "" "" -rconfig real nssl_cnoh namelist,physics max_domains 4.e5 rh "Graupel intercept paramter" "" "" -rconfig real nssl_cnohl namelist,physics max_domains 4.e4 rh "Hail intercept paramter" "" "" -rconfig real nssl_cnor namelist,physics max_domains 8.e5 rh "Rain intercept paramter" "" "" -rconfig real nssl_cnos namelist,physics max_domains 3.e6 rh "Snow intercept paramter" "" "" -rconfig real nssl_rho_qh namelist,physics max_domains 500. rh "Graupel particle density" "" "" -rconfig real nssl_rho_qhl namelist,physics max_domains 900. rh "Hail particle density" "" "" -rconfig real nssl_rho_qs namelist,physics max_domains 100. rh "Snow particle density" "" "" +rconfig real nssl_cccn namelist,physics 1 0.5e9 rh "Base CCN concentration for NSSL microphysics" "" "" +rconfig real nssl_alphah namelist,physics 1 0 rh "Graupel PSD shape paramter" "" "" +rconfig real nssl_alphahl namelist,physics 1 1 rh "Hail PSD shape paramter" "" "" +rconfig real nssl_cnoh namelist,physics 1 4.e5 rh "Graupel intercept paramter" "" "" +rconfig real nssl_cnohl namelist,physics 1 4.e4 rh "Hail intercept paramter" "" "" +rconfig real nssl_cnor namelist,physics 1 8.e5 rh "Rain intercept paramter" "" "" +rconfig real nssl_cnos namelist,physics 1 3.e6 rh "Snow intercept paramter" "" "" +rconfig real nssl_rho_qh namelist,physics 1 500. rh "Graupel particle density" "" "" +rconfig real nssl_rho_qhl namelist,physics 1 900. rh "Hail particle density" "" "" +rconfig real nssl_rho_qs namelist,physics 1 100. rh "Snow particle density" "" "" +rconfig integer nssl_icdx namelist,physics 1 6 rh "NSSL Graupel fall speed option" "" "" +rconfig integer nssl_icdxhl namelist,physics 1 6 rh "NSSL Hail fall speed option" "" "" +rconfig integer nssl_hail_on namelist,physics max_domains -1 rh "NSSL Hail flag" "" "" +rconfig integer nssl_ccn_on namelist,physics 1 -1 rh "NSSL CCN flag" "" "" +rconfig integer nssl_ccn_is_ccna namelist,physics 1 0 rh "NSSL flag that CCN is CCNA" "" "" +rconfig integer nssl_2moment_on namelist,physics 1 -1 rh "NSSL 2-moment flag" "" "" +rconfig integer nssl_3moment namelist,physics 1 0 rh "NSSL 3-moment flag" "" "" +rconfig integer nssl_density_on namelist,physics 1 -1 rh "NSSL graupel/hail density flag" "" "" + + + rconfig integer CCNTY namelist,physics 1 2 rh "Aerosol background type for NTU microphysics" "" "" # Lightning Qv Nudging @@ -2995,11 +3018,8 @@ package cammgmpscheme mp_physics==11 - moist:qv,qc package sbu_ylinscheme mp_physics==13 - moist:qv,qc,qr,qi,qs;state:rimi package wdm5scheme mp_physics==14 - moist:qv,qc,qr,qi,qs;scalar:qnn,qnc,qnr;state:re_cloud,re_ice,re_snow package wdm6scheme mp_physics==16 - moist:qv,qc,qr,qi,qs,qg;scalar:qnn,qnc,qnr;state:re_cloud,re_ice,re_snow -package nssl_2mom mp_physics==17 - moist:qv,qc,qr,qi,qs,qg,qh;scalar:qndrop,qnr,qni,qns,qng,qnh,qvolg,qvolh;state:re_cloud,re_ice,re_snow -package nssl_2momccn mp_physics==18 - moist:qv,qc,qr,qi,qs,qg,qh;scalar:qnn,qndrop,qnr,qni,qns,qng,qnh,qvolg,qvolh;state:re_cloud,re_ice,re_snow -package nssl_1mom mp_physics==19 - moist:qv,qc,qr,qi,qs,qg,qh;scalar:qvolg -package nssl_1momlfo mp_physics==21 - moist:qv,qc,qr,qi,qs,qg -package nssl_2momg mp_physics==22 - moist:qv,qc,qr,qi,qs,qg;scalar:qndrop,qnr,qni,qns,qng,qvolg;state:re_cloud,re_ice,re_snow +# Note: Options 17, 19, 21, 22 are deprecated but still reserved for compatibility -- for now +package nssl_2mom mp_physics==18 - moist:qv,qc,qr,qi,qs,qg package wsm7scheme mp_physics==24 - moist:qv,qc,qr,qi,qs,qg,qh;state:re_cloud,re_ice,re_snow package wdm7scheme mp_physics==26 - moist:qv,qc,qr,qi,qs,qg,qh;scalar:qnn,qnc,qnr;state:re_cloud,re_ice,re_snow package thompsonaero mp_physics==28 - moist:qv,qc,qr,qi,qs,qg;scalar:qni,qnr,qnc,qnwfa,qnifa,qnbca;state:re_cloud,re_ice,re_snow,qnwfa2d,qnifa2d,taod5503d,taod5502d @@ -3015,6 +3035,16 @@ package etampnew mp_physics==95 - moist:qv,qc package gsfcgcescheme mp_physics==97 - moist:qv,qc,qr,qi,qs,qg package madwrf_mp mp_physics==96 - moist:qv,qc,qi,qs +package nssl2mconc nssl_2moment_on==1 - scalar:qndrop,qnr,qni,qns,qng;state:re_cloud,re_ice,re_snow +package nssl3mg nssl_3moment==1 - scalar:qzr,qzg +package nssl3m nssl_3moment==2 - scalar:qzr,qzg,qzh +package nssl_hail nssl_hail_on==1 - moist:qh;scalar:qnh +package nssl_hail1m nssl_hail_on==2 - moist:qh; +package nssl_ccn_opt nssl_ccn_on==1 - scalar:qnn +package nssl_graupelvol nssl_density_on==1 - scalar:qvolg +package nssl_hailvol nssl_density_on==2 - scalar:qvolg,qvolh + + package radar_refl compute_radar_ref==1 - state:refl_10cm,refd_max endif @@ -3038,10 +3068,12 @@ package morr_two_moment_dfi mp_physics_dfi==10 - dfi_moist:dfi #package sbu_ylinscheme_dfi mp_physics==13 - dfi_moist:dfi_qv,dfi_qc,dfi_qr,dfi_qi,dfi_qs;state:rimi package wdm5scheme_dfi mp_physics_dfi==14 - dfi_moist:dfi_qv,dfi_qc,dfi_qr,dfi_qi,dfi_qs;dfi_scalar:dfi_qnn,dfi_qnc,dfi_qnr;state:dfi_re_cloud,dfi_re_ice,dfi_re_snow package wdm6scheme_dfi mp_physics_dfi==16 - dfi_moist:dfi_qv,dfi_qc,dfi_qr,dfi_qi,dfi_qs,dfi_qg;dfi_scalar:dfi_qnn,dfi_qnc,dfi_qnr;state:dfi_re_cloud,dfi_re_ice,dfi_re_snow -package nssl_2mom_dfi mp_physics_dfi==17 - dfi_moist:dfi_qv,dfi_qc,dfi_qr,dfi_qi,dfi_qs,dfi_qg,dfi_qh;dfi_scalar:dfi_qndrop,dfi_qnr,dfi_qni,dfi_qns,dfi_qng,dfi_qnh,dfi_qvolg,dfi_qvolh;state:dfi_re_cloud,dfi_re_ice,dfi_re_snow -package nssl_2mom_dficcn mp_physics_dfi==18 - dfi_moist:dfi_qv,dfi_qc,dfi_qr,dfi_qi,dfi_qs,dfi_qg,dfi_qh;dfi_scalar:dfi_qndrop,dfi_qnn,dfi_qnr,dfi_qni,dfi_qns,dfi_qng,dfi_qnh,dfi_qvolg;state:dfi_re_cloud,dfi_re_ice,dfi_re_snow -package nssl_1mom_dfi mp_physics_dfi==19 - dfi_moist:dfi_qv,dfi_qc,dfi_qr,dfi_qi,dfi_qs,dfi_qg,dfi_qh;dfi_scalar:dfi_qvolg -package nssl_1momlfo_dfi mp_physics_dfi==21 - dfi_moist:dfi_qv,dfi_qc,dfi_qr,dfi_qi,dfi_qs,dfi_qg +#package nssl_2mom_dfi mp_physics_dfi==17 - dfi_moist:dfi_qv,dfi_qc,dfi_qr,dfi_qi,dfi_qs,dfi_qg,dfi_qh;dfi_scalar:dfi_qndrop,dfi_qnr,dfi_qni,dfi_qns,dfi_qng,dfi_qnh,dfi_qvolg,dfi_qvolh;state:dfi_re_cloud,dfi_re_ice,dfi_re_snow +#package nssl_2mom_dficcn mp_physics_dfi==18 - dfi_moist:dfi_qv,dfi_qc,dfi_qr,dfi_qi,dfi_qs,dfi_qg,dfi_qh;dfi_scalar:dfi_qndrop,dfi_qnn,dfi_qnr,dfi_qni,dfi_qns,dfi_qng,dfi_qnh,dfi_qvolg;state:dfi_re_cloud,dfi_re_ice,dfi_re_snow +package nssl_2mom_dfi mp_physics_dfi==18 - dfi_moist:dfi_qv,dfi_qc,dfi_qr,dfi_qi,dfi_qs,dfi_qg,dfi_qh;dfi_scalar:dfi_qndrop,dfi_qnn,dfi_qnr,dfi_qni,dfi_qns,dfi_qng,dfi_qnh,dfi_qvolg;state:dfi_re_cloud,dfi_re_ice,dfi_re_snow +#package nssl_1mom_dfi mp_physics_dfi==19 - dfi_moist:dfi_qv,dfi_qc,dfi_qr,dfi_qi,dfi_qs,dfi_qg,dfi_qh;dfi_scalar:dfi_qvolg +#package nssl_1momlfo_dfi mp_physics_dfi==21 - dfi_moist:dfi_qv,dfi_qc,dfi_qr,dfi_qi,dfi_qs,dfi_qg +#package nssl_2momg_dfi mp_physics_dfi==22 - dfi_moist:dfi_qv,dfi_qc,dfi_qr,dfi_qi,dfi_qs,dfi_qg;dfi_scalar:dfi_qndrop,dfi_qnr,dfi_qni,dfi_qns,dfi_qng,dfi_qvolg;state:dfi_re_cloud,dfi_re_ice,dfi_re_snow package wsm7scheme_dfi mp_physics_dfi==24 - dfi_moist:dfi_qv,dfi_qc,dfi_qr,dfi_qi,dfi_qs,dfi_qg,dfi_qh;state:dfi_re_cloud,dfi_re_ice,dfi_re_snow package wdm7scheme_dfi mp_physics_dfi==26 - dfi_moist:dfi_qv,dfi_qc,dfi_qr,dfi_qi,dfi_qs,dfi_qg,dfi_qh;dfi_scalar:dfi_qnn,dfi_qnc,dfi_qnr;state:dfi_re_cloud,dfi_re_ice,dfi_re_snow package thompsonaero_dfi mp_physics_dfi==28 - dfi_moist:dfi_qv,dfi_qc,dfi_qr,dfi_qi,dfi_qs,dfi_qg;dfi_scalar:dfi_qni,dfi_qnr,dfi_qnc,dfi_qnwfa,dfi_qnifa,dfi_qnbca;state:dfi_re_cloud,dfi_re_ice,dfi_re_snow diff --git a/Registry/registry.var b/Registry/registry.var index 366e1c2da0..32cc1471db 100644 --- a/Registry/registry.var +++ b/Registry/registry.var @@ -593,11 +593,8 @@ package cammgmpscheme mp_physics==11 - moist:qv,qc package sbu_ylinscheme mp_physics==13 - moist:qv,qc,qr,qi,qs package wdm5scheme mp_physics==14 - moist:qv,qc,qr,qi,qs package wdm6scheme mp_physics==16 - moist:qv,qc,qr,qi,qs,qg -package nssl_2mom mp_physics==17 - moist:qv,qc,qr,qi,qs,qg,qh -package nssl_2momccn mp_physics==18 - moist:qv,qc,qr,qi,qs,qg,qh -package nssl_1mom mp_physics==19 - moist:qv,qc,qr,qi,qs,qg,qh -package nssl_1momlfo mp_physics==21 - moist:qv,qc,qr,qi,qs,qg -package nssl_2momg mp_physics==22 - moist:qv,qc,qr,qi,qs,qg +# Note: Options 17, 19, 21, 22 are deprecated but still reserved for compatibility -- for now +package nssl_2mom mp_physics==18 - moist:qv,qc,qr,qi,qs,qg package thompsonaero mp_physics==28 - moist:qv,qc,qr,qi,qs,qg package p3_1category mp_physics==50 - moist:qv,qc,qr,qi package p3_1category_nc mp_physics==51 - moist:qv,qc,qr,qi @@ -607,6 +604,7 @@ package ntu mp_physics==56 - moist:qv,qc package etampnew mp_physics==95 - moist:qv,qc,qr,qs package lscondscheme mp_physics==98 - moist:qv package mkesslerscheme mp_physics==99 - moist:qv,qc,qr + # package mpnotset_4dvar mp_physics_4dvar==-1 - g_moist:g_qv;a_moist:a_qv package passiveqv_4dvar mp_physics_4dvar==0 - g_moist:g_qv;a_moist:a_qv @@ -626,11 +624,8 @@ package cammgmp_4dvar mp_physics_4dvar==11 - g_moist:g_q package sbu_ylin_4dvar mp_physics_4dvar==13 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs package wdm5_4dvar mp_physics_4dvar==14 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs package wdm6_4dvar mp_physics_4dvar==16 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs,g_qg;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs,a_qg -package nssl_2mom_4dvar mp_physics_4dvar==17 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs,g_qg,g_qh;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs,a_qg,a_qh -package nssl_2momccn_4dvar mp_physics_4dvar==18 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs,g_qg,g_qh;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs,a_qg,a_qh -package nssl_1mom_4dvar mp_physics_4dvar==19 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs,g_qg,g_qh;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs,a_qg,a_qh -package nssl_1momlfo_4dvar mp_physics_4dvar==21 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs,g_qg;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs,a_qg -package nssl_2momg_4dvar mp_physics_4dvar==22 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs,g_qg;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs,a_qg +# Note: Options 17, 19, 21, 22 are deprecated but still reserved for compatibility -- for now +package nssl_2mom_4dvar mp_physics_4dvar==18 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs,g_qg,g_qh;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs,a_qg,a_qh package thompsonaero_4dvar mp_physics_4dvar==28 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs,g_qg;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs,a_qg package p3_1category_4dvar mp_physics_4dvar==50 - g_moist:g_qv,g_qc,g_qr,g_qi;a_moist:a_qv,a_qc,a_qr,a_qi package p3_1category_nc_4dvar mp_physics_4dvar==51 - g_moist:g_qv,g_qc,g_qr,g_qi;a_moist:a_qv,a_qc,a_qr,a_qi diff --git a/Registry/registry.wrfplus b/Registry/registry.wrfplus index 7f277a882d..2b6f933c47 100644 --- a/Registry/registry.wrfplus +++ b/Registry/registry.wrfplus @@ -872,11 +872,7 @@ package cammgmp_plus mp_physics_plus==11 - g_moist:g_qv, package sbu_ylin_plus mp_physics_plus==13 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs package wdm5_plus mp_physics_plus==14 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs package wdm6_plus mp_physics_plus==16 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs,g_qg;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs,a_qg -package nssl_2mom_plus mp_physics_plus==17 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs,g_qg,g_qh;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs,a_qg,a_qh -package nssl_2momccn_plus mp_physics_plus==18 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs,g_qg,g_qh;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs,a_qg,a_qh -package nssl_1mom_plus mp_physics_plus==19 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs,g_qg,g_qh;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs,a_qg,a_qh -package nssl_1momlfo_plus mp_physics_plus==21 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs,g_qg;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs,a_qg -package nssl_2momg_plus mp_physics_plus==22 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs,g_qg;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs,a_qg +package nssl_2mom_plus mp_physics_plus==18 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs,g_qg,g_qh;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs,a_qg,a_qh package thompsonaero_plus mp_physics_plus==28 - g_moist:g_qv,g_qc,g_qr,g_qi,g_qs,g_qg;a_moist:a_qv,a_qc,a_qr,a_qi,a_qs,a_qg package p3_1category_plus mp_physics_plus==50 - g_moist:g_qv,g_qc,g_qr,g_qi;a_moist:a_qv,a_qc,a_qr,a_qi package p3_1category_nc_plus mp_physics_plus==51 - g_moist:g_qv,g_qc,g_qr,g_qi;a_moist:a_qv,a_qc,a_qr,a_qi diff --git a/chem/chemics_init.F b/chem/chemics_init.F index 59f0546883..a0512f0a06 100755 --- a/chem/chemics_init.F +++ b/chem/chemics_init.F @@ -337,8 +337,8 @@ subroutine chem_init (id,chem,emis_ant,scalar,dt,bioemdt,photdt,chemdt,stepbioe, call wrf_error_fatal("ERROR: wet scavenging option requires chem_opt = 8 through 13 or 31 to 36 or 41 to 42 or 109 or 503 or 504 or 601 or 611 to function.") endif if ( config_flags%mp_physics /= 2 .and. config_flags%mp_physics /= 10 .and. config_flags%mp_physics /= 11 & - .and. config_flags%mp_physics /= 17 .and. config_flags%mp_physics /= 18 .and. config_flags%mp_physics /= 22) then - call wrf_error_fatal("ERROR: wet scavenging option requires mp_phys = 2 (Lin et al.) or 10 (Morrison) or 11 (CAMMGMP) or 17/18/22 NSSL_2mom to function.") + .and. .not. ( config_flags%mp_physics == 18 .and. config_flags%nssl_2moment_on == 1 ) ) then + call wrf_error_fatal("ERROR: wet scavenging option requires mp_phys = 2 (Lin et al.) or 10 (Morrison) or 11 (CAMMGMP) or 18 NSSL_2mom to function.") endif elseif( id == 1 ) then if ( config_flags%mp_physics /= 6 .and. config_flags%mp_physics /= 8 .and. config_flags%mp_physics /= 10 .and. config_flags%mp_physics /= 17 & diff --git a/doc/README.NSSLmp b/doc/README.NSSLmp new file mode 100644 index 0000000000..e9b673653e --- /dev/null +++ b/doc/README.NSSLmp @@ -0,0 +1,165 @@ +Some background information and usage tips for the NSSL microphysics scheme. + + + IMPORTANT: Best results are attained using WENO (Weighted Essentially Non-Oscillatory) scalar advection option. This helps to limit oscillations at the edges of precipitation regions (i.e., sharp gradient), which in turns helps to prevent mismatches of moments that can show up as noisy reflectivity values. + moist_adv_opt = 4, + scalar_adv_opt = 3, + The monotonic option (2) is less effective, but better than the default positive definite option (1) + +NOTE TO SMPAR or DM+SMPAR USERS: If a segmentation fault occurs, try setting the environment variable OMP_STACKSIZE to 8M or 16M (default is 4M, where M=MB). Note that this does not increase the shell stacksize limit [use 'ulimit -a unlimited' (bash) or 'unlimit stacksize' (tcsh)] + +CHANGES: +June 2023 (WRF 4.6): Main default option change is for graupel/hail fall speed options (icdx, icdxhl; changed from 3 to 6, see below), and default maximum gr/hail droplet collection efficiencies (ehw0/ehlw0 changed from 0.5/0.75 to 0.9/0.9, see below). Snow aggregation efficiency is reduced to limit excessive snow reflectivity (see below). + +CONTACT: For questions not covered here (or other issues/bugs), feel free to contact Ted Mansell (NOAA/NSSL) at ted.mansell_at_noaa.gov and/or tag @MicroTed in a github issue. + +DESCRIPTION: + +The NSSL bulk microphysical parameterization scheme describes form and phase changes among a range of liquid and ice hydrometeors, as described in Mansell et al. (2010) and Mansell and Ziegler (2013). It is designed with deep (severe) convection in mind at grid spacings of up to 4 km, but can also be run at larger grid spacing as needed for nesting etc. It is also able to capture non-severe and winter weather. The scheme predicts the mass mixing ratio and number concentration of cloud droplets, raindrops, cloud ice crystals (columns), snow particles (including large crystals and aggregates), graupel, and (optionally) hail. The 3-moment option additionally predicts the 6th moments of rain, graupel, and hail which in turn predicts the PSD shape parameters (set nssl_3moment=.true.). + +Basic options in physics namelist: + mp_physics = 18 ! NSSL scheme (2-moment) with hail and predicted + CCN concentration + options + + The legacy options (17,19,21,22) still behave as before (for now), but going + forward one should use mp_physics=18 with modifier flags: + + mp_physics + = 22 ! NSSL scheme (2-moment) without hail + Equivalent: mp=18, nssl_hail_on=0, nssl_ccn_on=0 + = 17 ! NSSL scheme (2-moment) with hail with constant background CCN + concentration + Equivalent: mp=18, nssl_ccn_on=0 + = 19, NSSL 1-moment (7 class: qv,qc,qr,qi,qs,qg,qh; predicts graupel density) + Equivalent: mp=18, nssl_2moment_on=0, nssl_ccn_on=0 (do no set nssl_hail_on) + = 21, NSSL 1-moment, (6-class), very similar to Gilmore et al. 2004 + Equivalent: mp=18, nssl_2moment_on=0, nssl_hail_on=0, nssl_ccn_on=0, + nssl_density_on=0 + +Option flags (integer; apply to all domains except nssl_hail_on): + + nssl_3moment : default value of 0, setting to 1 adds 6th moment for rain, + graupel (i.e., 3-moment ) and hail (Only needed for turning + 3-moment on) + + nssl_density_on : default value of 1; Setting to 0 turns off graupel/hail predicted + ice density and instead uses fixed (constant) ice density + for graupel (nssl_rho_qh, default 500.) and hail (nssl_rho_qhl, + default 800.) (Only needed for turning density off) + + nssl_ccn_on : predicted CCN concentration: default is on (1) for mp_physics=18 + + nssl_hail_on : If not set explicitly, it is set automatically to 1. This is the only + flag with dimensions of 'max_domains' e.g., so that hail can be turned + off on non-convection-allowing parent domains (Default is on, so this + is only needed for turning the hail species off) + + nssl_ccn_is_ccna : The CCN category, if enabled (=1), can be used to represent either the + number of unactivated CCN (default, value of 0, with irenuc=2), or, if + set to 1, it is CCNA (the number of activated CCN, background value + of zero). If irenuc >= 5 (see below), this is automatically set to 1. + + nssl_2moment_on : only use this flag to run single-moment (value of 0), otherwise + default is 1 (Only needed for turning 2-moment off) + + Other namelist options (also "physics" namelist) + nssl_alphah = 0. ! PSD shape parameter for graupel (1- and 2-moment) + nssl_alphahl = 1. ! PSD shape parameter for hail (1- and 2-moment) + nssl_cnoh = 4.e5 ! graupel intercept (1-moment only) + nssl_cnohl = 4.e4 ! hail intercept (1-moment only) + nssl_cnor = 8.e5 ! rain intercept (1-moment only) + nssl_cnos = 3.e6 ! snow intercept (1-moment only) + nssl_rho_qh = 500. ! graupel density (nssl_density_on=0) + nssl_rho_qhl = 800. ! hail density (nssl_density_on=0) + nssl_rho_qs = 100. ! snow density + + + nssl_cccn - (real) Initial concentration of cloud condensation + nuclei (per m^3 at sea level) + 0.25e+9 maritime + 0.5e+9 "low-med" continental (DEFAULT) + 1.0e+9 "med-high" continental + 1.5e+09 - high-extreme continental CCN) + Larger values run a risk of unrealistically weak + precipitation production + The value of nssl_cccn sets the concentration at MSL, and an initially + homogeneous number mixing ratio (ccn/1.225) is assumed throughout + the depth of the domain. The droplet concentration near cloud base + will be less than nssl_cccn because of the well-mixed assumption, + so if a target Nc is desired, set nssl_cccn higher by a factor of + 1.225/(air density at cloud base). + +The graupel and hail particle densities are also calculated by predicting the total particle volume. The graupel category therefore emulates a range of characteristics from high-density frozen drops (includes small hail) to low-density graupel (from rimed ice crystals/snow) in its size and density spectrum. The hail category is designed to simulate larger hail sizes. Hail is only produced from higher-density large graupel that is actively riming (esp. in wet growth). + +Hydrometeor size distributions are assumed to follow a gamma functional form. (Shape parameters for 2-moment graupel and hail can be set with nssl_alphah/nssl_alphahl.) Microphysical processes include cloud droplet and cloud ice nucleation, condensation, deposition, evaporation, sublimation, collection–coalescence, variable-density riming, shedding, ice multiplication, cloud ice aggregation, freezing and melting, and conversions between hydrometeor categories. + +Cloud concentration nuclei (CCN) concentration is predicted as in Mansell et al. (2010) with a bulk activation spectrum approximating small aerosols. (New option nssl_ccn_is_ccna=1 instead predicts the number of activated CCN.) The model tracks the number of unactivated CCN, and the local CCN concentration is depleted as droplets are activated, either at cloud base or in cloud. The CCN are subjected to advection and subgrid turbulent mixing but have no other interactions with hydrometeors; for example, scavenging by raindrops is omitted. CCN are restored by droplet evaporation and by a gradual regeneration when no hydrometeors are present (ccntimeconst). Aerosol sensitivity is enhanced by explicitly treating droplet condensation instead of using a saturation adjustment. Supersaturation (within reason) is allowed to persist in updraft with low droplet concentration. + +Droplet activation option method is controlled by the 'irenuc' option (internal to NSSL module). The default option (2) depletes CCN from the unactivated CCN field. A new option (7) instead counts the number of activated CCN (nucleated droplets) with the assumption of an initial constant CCN number mixing ratio. Option 7 better handles supersaturation at low CCN (e.g., maritime) concentrations by allowing extra droplet activation at high SS. + + irenuc : (nssl_mp_params namelist) + 2 = ccn field is UNactivated aerosol (default; old droplet activation) + Can switch to counting activated CCN with nssl_ccn_is_ccna=1 + 7 = ccn field must be ACTVIATED aerosol (new droplet activation) + Must have nssl_ccn_on=1 for irenuc=7 + +Excessive size sorting (common in 2-moment schemes) is effectively controlled by an adaptive breakup method that prevents reflectivity growth by sedimentation (Mansell 2010). For 2-moment, infall=4 (default; nssl_mp_params namelist) is recommended. For 3-moment, infall only really applies to droplets, cloud ice, and snow. + +Graupel -> hail conversion: The parameter ihlcnh selects the method of converting graupel (hail embryos) to the hail category. The default value is -1 for automatic setting. The original option (ihlcnh=1) is replaced by a new option (ihlcnh=3) as of May 2023. ihlcnh=3 converts from the graupel spectrum itself based on the wet growth diameter, which generally results in fewer initiated hailstones with larger diameters (and larger mean diameter at the ground). If hail size seems excessive, try setting ihlcnh=1, which tends to generate higher hail number concentrations and thus smaller diameters. + +The June 2023 (WRF 4.6) update introduces changes in the default options for graupel/hail fall speeds and collection efficiencies. The original fall speed options (icdx=3; icdxhl=3) from Mansell et al. (2010) are switched to the Milbrandt and Morrison (2013) fall speed curves (icdx=6; icdxhl=6). Because the fall speeds are generally a bit lower, a partially compensating increase in maximum collection efficiency is set by default: ehw0/ehlw0 increased to 0.9. One effect is somewhat reduced total precipitation and cold pool intensity for supercell storms. + + (nssl_mp_params namelist) + icdx - fall speed option for graupel (was 3, now is 6) + icdxhl - fall speed option for hail (was 3, now is 6) + ehw0,ehlw0 - Maximim droplet collection efficiencies for graupel (ehw0=0.75, now 0.9) + and hail (ehlw0=0.75, now 0.9) + ihlcnh - graupel to hail conversion option (was 1, now 3) + +In summary, to get something closer to previous behavior, use the following: + +&nssl_mp_params + icdx = 3 + icdxhl = 3 + ehw0 = 0.5 + ehlw0 = 0.75 + ihlcnh = 1 +/ + +Snow Aggregation and reflectivity: + +Snow self-collection (aggregation) has been curbed in the 4.6 version by reducing the collision efficiency and the temperature range over which aggregation is allowed (esstem): + + ess0 = 0.5 ! collision efficiency, reduced from 1 to 0.5 + esstem1 = -15. ! was -25. ! lower temperature where snow aggregation turns on + esstem2 = -10. ! was -20. ! higher temperature for linear ramp of ess from zero at esstem1 to formula value at esstem2 + + If desired, some further reduction in aggregation can be gained from setting iessopt=4, which reduces ess0 to 0.1 (80% reduction) in conditions of ice subsaturation (RHice < 100%). + Snow reflectivity formerly had a default setting that turned on a crude bright band enhancement (iusewetsnow=1). This is now turned off by default (iusewetsnow=0) + These snow parameters can be accessed through the nssl_mp_params namelist. + +References: + +Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification + of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., + 67, 171-194, doi:10. 1175/2009JAS2965.1. + +Mansell, E. R. and C. L. Ziegler, 2013: Aerosol effects on simulated storm + electrification and precipitation in a two-moment bulk microphysics model. + J. Atmos. Sci., 70 (7), 2032-2050, doi:10.1175/JAS-D-12-0264.1. + +Mansell, E. R., D. T. Dawson, J. M. Straka, Bin-emulating Hail Melting in 3-moment + bulk microphysics, J. Atmos. Sci., 77, 3361-3385, doi: 10.1175/JAS-D-19-0268.1 + +Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed + convective storms. Part I: Model development and preliminary testing. J. + Atmos. Sci., 42, 1487-1509. + +Sedimentation reference: + +Mansell, E. R., 2010: On sedimentation and advection in multimoment bulk microphysics. + J. Atmos. Sci., 67, 3084-3094, doi:10.1175/2010JAS3341.1. + + + + diff --git a/dyn_em/module_advect_em.F b/dyn_em/module_advect_em.F index 58145e340f..3c2ed3a630 100644 --- a/dyn_em/module_advect_em.F +++ b/dyn_em/module_advect_em.F @@ -7956,7 +7956,7 @@ SUBROUTINE advect_scalar_weno ( field, field_old, tendency, & real :: qim2, qim1, qi, qip1, qip2 double precision :: beta0, beta1, beta2, f0, f1, f2, wi0, wi1, wi2, sumwk - double precision, parameter :: gi0 = 1.d0/10.d0, gi1 = 6.d0/10.d0, gi2 = 3.d0/10.d0, eps=1.0d-28 + double precision, parameter :: gi0 = 1.d0/10.d0, gi1 = 6.d0/10.d0, gi2 = 3.d0/10.d0, eps=1.0d-40 integer, parameter :: pw = 2 @@ -8652,7 +8652,7 @@ SUBROUTINE advect_scalar_wenopd ( field, field_old, tendency, & real :: qim2, qim1, qi, qip1, qip2 double precision :: beta0, beta1, beta2, f0, f1, f2, wi0, wi1, wi2, sumwk - double precision, parameter :: gi0 = 1.d0/10.d0, gi1 = 6.d0/10.d0, gi2 = 3.d0/10.d0, eps1=1.0d-28 + double precision, parameter :: gi0 = 1.d0/10.d0, gi1 = 6.d0/10.d0, gi2 = 3.d0/10.d0, eps1=1.0d-40 integer, parameter :: pw = 2 diff --git a/dyn_em/solve_em.F b/dyn_em/solve_em.F index 92d5b73fed..39cdf85723 100644 --- a/dyn_em/solve_em.F +++ b/dyn_em/solve_em.F @@ -3810,6 +3810,7 @@ END SUBROUTINE CMAQ_DRIVER & , SNOWNC=grid%snownc, SNOWNCV=grid%snowncv & & , GRAUPELNC=grid%graupelnc, GRAUPELNCV=grid%graupelncv & ! for milbrandt2mom & , HAILNC=grid%hailnc, HAILNCV=grid%hailncv & + & , HAIL_MAXK1=grid%hail_maxk1,HAIL_MAX2D=grid%hail_max2d & & , W=grid%w_2, Z=grid%z, HT=grid%ht & & , MP_RESTART_STATE=grid%mp_restart_state & & , TBPVS_STATE=grid%tbpvs_state & ! etampnew @@ -3859,11 +3860,11 @@ END SUBROUTINE CMAQ_DRIVER & , QNI3_CURR=scalar(ims,kms,jms,P_QNI3), F_QNI3=F_QNI3 & ! for Jensen ISHMAEL & , QVOLI3_CURR=scalar(ims,kms,jms,P_QVOLI3), F_QVOLI3=F_QVOLI3 & ! for Jensen ISHMAEL & , QAOLI3_CURR=scalar(ims,kms,jms,P_QAOLI3), F_QAOLI3=F_QAOLI3 & ! for Jensen ISHMAEL -! & , QZR_CURR=scalar(ims,kms,jms,P_QZR), F_QZR=F_QZR & ! for milbrandt3mom + & , QZR_CURR=scalar(ims,kms,jms,P_QZR), F_QZR=F_QZR & ! for milbrandt3mom & , QZI_CURR=scalar(ims,kms,jms,P_QZI), F_QZI=F_QZI & ! for 3-moment P3 ! & , QZS_CURR=scalar(ims,kms,jms,P_QZS), F_QZS=F_QZS & ! " -! & , QZG_CURR=scalar(ims,kms,jms,P_QZG), F_QZG=F_QZG & ! " -! & , QZH_CURR=scalar(ims,kms,jms,P_QZH), F_QZH=F_QZH & ! " + & , QZG_CURR=scalar(ims,kms,jms,P_QZG), F_QZG=F_QZG & ! " + & , QZH_CURR=scalar(ims,kms,jms,P_QZH), F_QZH=F_QZH & ! " & , QVOLG_CURR=scalar(ims,kms,jms,P_QVOLG), F_QVOLG=F_QVOLG & ! for nssl_2mom & , QVOLH_CURR=scalar(ims,kms,jms,P_QVOLH), F_QVOLH=F_QVOLH & ! for nssl_2mom & , QDCN_CURR=scalar(ims,kms,jms,P_QDCN), F_QDCN=F_QDCN & ! for ntu3m diff --git a/dyn_em/start_em.F b/dyn_em/start_em.F index 941b64a1c5..97a5bfcdcf 100644 --- a/dyn_em/start_em.F +++ b/dyn_em/start_em.F @@ -1234,15 +1234,7 @@ SUBROUTINE start_domain_em ( grid, allowed_to_read & grid%itimestep, grid%fdob, & t00, p00, a, & ! for obs_nudge base state grid%TYR, grid%TYRA, grid%TDLY, grid%TLAG, grid%NYEAR, grid%NDAY,grid%tmn_update, & - grid%achfx, grid%aclhf, grid%acgrdflx, & - config_flags%nssl_cccn, & - config_flags%nssl_alphah, config_flags%nssl_alphahl, & - config_flags%nssl_cnoh, config_flags%nssl_cnohl, & - config_flags%nssl_cnor, config_flags%nssl_cnos, & - config_flags%nssl_rho_qh, config_flags%nssl_rho_qhl, & - config_flags%nssl_rho_qs, & - config_flags%nssl_ipelec, & - config_flags%nssl_isaund & + grid%achfx, grid%aclhf, grid%acgrdflx & ,grid%RQCNCUTEN, grid%RQINCUTEN,grid%rliq & !mchen add for cammpmg ,grid%cldfra_dp,grid%cldfra_sh & ! ckay for subgrid cloud ,grid%te_temf,grid%cf3d_temf,grid%wm_temf & ! WA @@ -1759,8 +1751,12 @@ SUBROUTINE start_domain_em ( grid, allowed_to_read & IF ( f_qnn ) THEN IF ( config_flags%mp_physics == wdm5scheme .or. config_flags%mp_physics == wdm6scheme ) THEN ! NO OP - ELSE IF ( config_flags%mp_physics == nssl_2momccn ) THEN - grid%ccn_conc = config_flags%nssl_cccn/1.225 + ELSE IF ( config_flags%mp_physics == nssl_2mom ) THEN + IF ( config_flags%nssl_ccn_is_ccna == 0 ) THEN + grid%ccn_conc = config_flags%nssl_cccn/1.225 + ELSE + grid%ccn_conc = 0 + ENDIF ELSE ! NO OP END IF diff --git a/phys/module_diag_nwp.F b/phys/module_diag_nwp.F index 9879b496a7..336b0cd372 100644 --- a/phys/module_diag_nwp.F +++ b/phys/module_diag_nwp.F @@ -13,6 +13,7 @@ MODULE module_diag_nwp PRIVATE :: GAMMLN CONTAINS SUBROUTINE diagnostic_output_nwp( & + config_flags, & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & ips,ipe, jps,jpe, kps,kpe, & ! patch dims @@ -44,15 +45,17 @@ SUBROUTINE diagnostic_output_nwp( & ) !---------------------------------------------------------------------- + USE module_configure, ONLY : grid_config_rec_type + USE module_state_description, ONLY : & KESSLERSCHEME, LINSCHEME, SBU_YLINSCHEME, WSM3SCHEME, WSM5SCHEME, & WSM6SCHEME, ETAMPNEW, THOMPSON, THOMPSONAERO, THOMPSONGH, & MORR_TWO_MOMENT, GSFCGCESCHEME, WDM5SCHEME, WDM6SCHEME, & - NSSL_2MOM, NSSL_2MOMG, NSSL_2MOMCCN, NSSL_1MOM, NSSL_1MOMLFO, & MILBRANDT2MOM , CAMMGMPSCHEME, FULL_KHAIN_LYNN, MORR_TM_AERO, & - FAST_KHAIN_LYNN_SHPUND !,MILBRANDT3MOM, NSSL_3MOM + NSSL_2MOM, FAST_KHAIN_LYNN_SHPUND !,MILBRANDT3MOM USE MODULE_MP_THOMPSON, ONLY: idx_bg1 + IMPLICIT NONE !====================================================================== ! Definitions @@ -106,6 +109,10 @@ SUBROUTINE diagnostic_output_nwp( & ! !====================================================================== + ! We are not changing any of the namelist settings. + + TYPE ( grid_config_rec_type ), INTENT(IN) :: config_flags + INTEGER, INTENT(IN ) :: & ids,ide, jds,jde, kds,kde, & ims,ime, jms,jme, kms,kme, & @@ -378,7 +385,7 @@ SUBROUTINE diagnostic_output_nwp( & !.. graupel category mixing ratio and number concentration (or hail, if !.. available). This diagnostic uses the actual spectral distribution !.. assumptions, calculated by breaking the distribution into 50 bins -!.. from 0.5mm to 7.5cm. Once a minimum number concentration of 0.01 +!.. from 0.5mm to 7.5cm. Once a minimum number concentration of thresh_conc (5e-4) !.. particle per cubic meter of air is reached, from the upper size !.. limit, then this bin is considered the max size. !+---+-----------------------------------------------------------------+ @@ -714,19 +721,26 @@ SUBROUTINE diagnostic_output_nwp( & ! CASE (MILBRANDT3MOM) ! coming in future? - CASE (NSSL_1MOMLFO, NSSL_1MOM, NSSL_2MOM, NSSL_2MOMG, NSSL_2MOMCCN) + CASE (NSSL_2MOM) +! Only treat 1-moment option here. 2- and 3-moment are now done in the microphysics +! + if ( config_flags%nssl_2moment_on == 0 ) then ! single-moment scheme_has_graupel = .true. xrho_g = nssl_rho_qh N0exp = nssl_cnoh - if (PRESENT(qh_curr)) then + if (config_flags%nssl_hail_on==1) then xrho_g = nssl_rho_qhl N0exp = nssl_cnohl endif xam_g = 3.1415926536/6.0*xrho_g - if (PRESENT(ng_curr)) xmu_g = nssl_alphah - if (PRESENT(nh_curr)) xmu_g = nssl_alphahl + + IF (config_flags%nssl_hail_on==1) THEN + xmu_g = nssl_alphahl + ELSE + xmu_g = nssl_alphah + ENDIF if (xmu_g .NE. 0.) then cge(1) = xbm_g + 1. @@ -736,11 +750,14 @@ SUBROUTINE diagnostic_output_nwp( & cgg(n) = WGAMMA(cge(n)) enddo endif + + ENDIF ! NSSL scheme has many options, but, if single-moment, just fill ! in the number array for graupel from built-in assumptions. - if (.NOT.(PRESENT(nh_curr).OR.PRESENT(ng_curr)) ) then +! if (.NOT.(PRESENT(nh_curr).OR.PRESENT(ng_curr)) ) then + if ( config_flags%nssl_2moment_on == 0 ) then ! single-moment ! !$OMP PARALLEL DO & ! !$OMP PRIVATE ( ij ) DO ij = 1 , num_tiles diff --git a/phys/module_diagnostics_driver.F b/phys/module_diagnostics_driver.F index 42c29f49d2..aa583b505f 100644 --- a/phys/module_diagnostics_driver.F +++ b/phys/module_diagnostics_driver.F @@ -39,9 +39,8 @@ SUBROUTINE diagnostics_driver ( grid, config_flags, & KESSLERSCHEME, LINSCHEME, SBU_YLINSCHEME, WSM3SCHEME, WSM5SCHEME, & WSM6SCHEME, ETAMPNEW, THOMPSON, THOMPSONAERO, THOMPSONGH, & MORR_TWO_MOMENT, GSFCGCESCHEME, WDM5SCHEME, WDM6SCHEME, & - NSSL_2MOM, NSSL_2MOMCCN, NSSL_1MOM, NSSL_1MOMLFO, & MILBRANDT2MOM , CAMMGMPSCHEME, FAST_KHAIN_LYNN_SHPUND, FULL_KHAIN_LYNN, & - MORR_TM_AERO !TWG add !,MILBRANDT3MOM, NSSL_3MOM, MORR_MILB_P3 + NSSL_2MOM, MORR_TM_AERO !TWG add !,MILBRANDT3MOM, MORR_MILB_P3 USE module_driver_constants, ONLY: max_plevs, max_zlevs @@ -410,9 +409,10 @@ SUBROUTINE diagnostics_driver ( grid, config_flags, & mp_select: SELECT CASE(config_flags%mp_physics) - CASE (LINSCHEME, WSM6SCHEME, WDM6SCHEME, GSFCGCESCHEME, NSSL_1MOMLFO) + CASE (LINSCHEME, WSM6SCHEME, WDM6SCHEME, GSFCGCESCHEME) - CALL diagnostic_output_nwp( & + CALL diagnostic_output_nwp( & + config_flags=config_flags, & U=grid%u_2 ,V=grid%v_2 & ,TEMP=grid%t_phy ,P8W=p8w & ,DT=grid%dt ,SBW=config_flags%spec_bdy_width & @@ -460,6 +460,7 @@ SUBROUTINE diagnostics_driver ( grid, config_flags, & CASE (THOMPSON, THOMPSONAERO) CALL diagnostic_output_nwp( & + config_flags=config_flags, & U=grid%u_2 ,V=grid%v_2 & ,TEMP=grid%t_phy ,P8W=p8w & ,DT=grid%dt ,SBW=config_flags%spec_bdy_width & @@ -509,6 +510,7 @@ SUBROUTINE diagnostics_driver ( grid, config_flags, & CASE (THOMPSONGH) CALL diagnostic_output_nwp( & + config_flags=config_flags, & U=grid%u_2 ,V=grid%v_2 & ,TEMP=grid%t_phy ,P8W=p8w & ,DT=grid%dt ,SBW=config_flags%spec_bdy_width & @@ -560,6 +562,7 @@ SUBROUTINE diagnostics_driver ( grid, config_flags, & CASE (MORR_TWO_MOMENT, MORR_TM_AERO) ! TWG add CALL diagnostic_output_nwp( & + config_flags=config_flags, & U=grid%u_2 ,V=grid%v_2 & ,TEMP=grid%t_phy ,P8W=p8w & ,DT=grid%dt ,SBW=config_flags%spec_bdy_width & @@ -605,57 +608,11 @@ SUBROUTINE diagnostics_driver ( grid, config_flags, & ,ADAPTIVE_TS=config_flags%use_adaptive_time_step & ) - CASE (NSSL_1MOM) - CALL diagnostic_output_nwp( & - U=grid%u_2 ,V=grid%v_2 & - ,TEMP=grid%t_phy ,P8W=p8w & - ,DT=grid%dt ,SBW=config_flags%spec_bdy_width & - ,XTIME=grid%xtime & - ! Selection flag - ,MPHYSICS_OPT=config_flags%mp_physics & ! gthompsn - ,GSFCGCE_HAIL=config_flags%gsfcgce_hail & ! gthompsn - ,GSFCGCE_2ICE=config_flags%gsfcgce_2ice & ! gthompsn - ,MPUSE_HAIL=config_flags%hail_opt & ! gthompsn - ,NSSL_ALPHAH=config_flags%nssl_alphah & ! gthompsn - ,NSSL_ALPHAHL=config_flags%nssl_alphahl & ! gthompsn - ,NSSL_CNOH=config_flags%nssl_cnoh & ! gthompsn - ,NSSL_CNOHL=config_flags%nssl_cnohl & ! gthompsn - ,NSSL_RHO_QH=config_flags%nssl_rho_qh & ! gthompsn - ,NSSL_RHO_QHL=config_flags%nssl_rho_qhl & ! gthompsn - ,CURR_SECS2=curr_secs2 & - ,NWP_DIAGNOSTICS=config_flags%nwp_diagnostics & - ,DIAGFLAG=diag_flag & - ,HISTORY_INTERVAL=grid%history_interval & - ,ITIMESTEP=grid%itimestep & - ,U10=grid%u10,V10=grid%v10,W=grid%w_2 & - ,WSPD10MAX=grid%wspd10max & - ,UP_HELI_MAX=grid%up_heli_max & - ,W_UP_MAX=grid%w_up_max,W_DN_MAX=grid%w_dn_max & - ,ZNW=grid%znw,W_COLMEAN=grid%w_colmean & - ,NUMCOLPTS=grid%numcolpts,W_MEAN=grid%w_mean & - ,GRPL_MAX=grid%grpl_max,GRPL_COLINT=grid%grpl_colint & - ,REFD_MAX=grid%refd_max & - ,refl_10cm=grid%refl_10cm & - ,HAIL_MAXK1=grid%hail_maxk1,HAIL_MAX2D=grid%hail_max2d & ! gthompsn - ,QG_CURR=moist(ims,kms,jms,P_QG) & - ,QH_CURR=moist(ims,kms,jms,P_QH) & ! gthompsn - ,RHO=grid%rho,PH=grid%ph_2,PHB=grid%phb,G=g & - ! Dimension arguments - ,IDS=ids,IDE=ide, JDS=jds,JDE=jde, KDS=kds,KDE=kde & - ,IMS=ims,IME=ime, JMS=jms,JME=jme, KMS=kms,KME=kme & - ,IPS=ips,IPE=ipe, JPS=jps,JPE=jpe, KPS=kps,KPE=kpe & - ,I_START=grid%i_start,I_END=min(grid%i_end, ide-1) & - ,J_START=grid%j_start,J_END=min(grid%j_end, jde-1) & - ,KTS=k_start, KTE=min(k_end,kde-1) & - ,NUM_TILES=grid%num_tiles & - ,MAX_TIME_STEP=grid%max_time_step & - ,ADAPTIVE_TS=config_flags%use_adaptive_time_step & - ) - - CASE (MILBRANDT2MOM, NSSL_2MOM, NSSL_2MOMCCN) + CASE (MILBRANDT2MOM, NSSL_2MOM) CALL diagnostic_output_nwp( & + config_flags=config_flags, & U=grid%u_2 ,V=grid%v_2 & ,TEMP=grid%t_phy ,P8W=p8w & ,DT=grid%dt ,SBW=config_flags%spec_bdy_width & @@ -715,8 +672,6 @@ SUBROUTINE diagnostics_driver ( grid, config_flags, & ! CASE (ETAMPNEW) -! CASE (NSSL_3MOM) - ! CASE (MILBRANDT3MOM) ! CASE (MORR_MILB_P3) @@ -734,6 +689,7 @@ SUBROUTINE diagnostics_driver ( grid, config_flags, & CASE DEFAULT CALL diagnostic_output_nwp( & + config_flags=config_flags, & U=grid%u_2 ,V=grid%v_2 & ,TEMP=grid%t_phy ,P8W=p8w & ,DT=grid%dt ,SBW=config_flags%spec_bdy_width & diff --git a/phys/module_microphysics_driver.F b/phys/module_microphysics_driver.F index 7bfcaf901b..57ab8407fd 100644 --- a/phys/module_microphysics_driver.F +++ b/phys/module_microphysics_driver.F @@ -104,6 +104,7 @@ SUBROUTINE microphysics_driver( & ,snownc, snowncv & ,hailnc, hailncv & ,graupelnc, graupelncv & + ,hail_maxk1, hail_max2d & #if ( WRF_CHEM == 1 ) ,rainprod, evapprod & ,qv_b4mp, qc_b4mp, qi_b4mp, qs_b4mp & @@ -166,8 +167,8 @@ SUBROUTINE microphysics_driver( & USE module_state_description, ONLY : & KESSLERSCHEME, LINSCHEME, SBU_YLINSCHEME, WSM3SCHEME, WSM5SCHEME & ,WSM6SCHEME, ETAMPNEW, FER_MP_HIRES, THOMPSON, THOMPSONAERO, THOMPSONGH, FAST_KHAIN_LYNN_SHPUND, MORR_TWO_MOMENT & - ,GSFCGCESCHEME, WDM5SCHEME, WDM6SCHEME, NSSL_2MOM, NSSL_2MOMCCN, NSSL_2MOMG, MADWRF_MP & - ,NSSL_1MOM,NSSL_1MOMLFO, FER_MP_HIRES_ADVECT & ! ,NSSL_3MOM & + ,GSFCGCESCHEME, WDM5SCHEME, WDM6SCHEME, NSSL_2MOM, MADWRF_MP & + ,FER_MP_HIRES_ADVECT & ,WSM7SCHEME, WDM7SCHEME & ,NUWRF4ICESCHEME & ,MILBRANDT2MOM , CAMMGMPSCHEME,FULL_KHAIN_LYNN, P3_1CATEGORY, P3_1CATEGORY_NC, P3_2CATEGORY, P3_1CAT_3MOM & @@ -241,8 +242,9 @@ SUBROUTINE microphysics_driver( & USE module_mp_cammgmp_driver, ONLY: CAMMGMP ! CAM5's microphysics driver # endif ! USE module_mp_milbrandt3mom +#if (WRFPLUS != 1) & !defined( VAR4D ) USE module_mp_nssl_2mom - +#endif USE module_mixactivate, only: prescribe_aerosol_mixactivate ! For checking model timestep is history time (for radar reflectivity) @@ -681,7 +683,8 @@ SUBROUTINE microphysics_driver( & ,GRAUPELNC & ,GRAUPELNCV & ,HAILNC & - ,HAILNCV + ,HAILNCV & + ,hail_maxk1, hail_max2d #if ( WRF_CHEM == 1) ! NUWRF JJS 20110525 vvvvv @@ -799,7 +802,7 @@ SUBROUTINE microphysics_driver( & ENDIF ! set this to true to print out the global max/min for W on each time step. - IF ( .false. ) THEN + IF ( .true. ) THEN wmax = maxval( w(ips:ipe,kps:kpe,jps:jpe) ) wmin = minval( w(ips:ipe,kps:kpe,jps:jpe) ) #if ( defined(DM_PARALLEL) && ! defined(STUBMPI) ) @@ -898,7 +901,7 @@ SUBROUTINE microphysics_driver( & IF( PRESENT(chem_opt) .AND. PRESENT(progn) ) THEN ! ERM: check whether to use built-in droplet nucleation or use qndrop from CHEM - IF ( mp_physics==NSSL_2MOMCCN .or. mp_physics==NSSL_2MOM .or. mp_physics==NSSL_2MOMG ) THEN + IF ( mp_physics==NSSL_2MOM .and. config_flags%nssl_2moment_on==1 ) THEN IF ( progn > 0 ) THEN IF ( .not. (chem_opt == 0 .or. chem_opt == 401) ) nssl_progn = .true. ELSE @@ -923,11 +926,11 @@ SUBROUTINE microphysics_driver( & its,ite, jts,jte, kts,kte, & F_QC=f_qc, F_QI=f_qi ) END IF - ELSEIF ( (chem_opt==0 .OR. chem_opt==401) .AND. progn==1 .AND. (mp_physics==NSSL_2MOMCCN .or. & - mp_physics==NSSL_2MOM .or. mp_physics==NSSL_2MOMG)) THEN + ELSEIF ( (chem_opt==0 .OR. chem_opt==401) .AND. progn==1 .AND. & + (mp_physics==NSSL_2MOM .and. config_flags%nssl_2moment_on==1)) THEN ! Do nothing here for the moment. Use activation of CCN within the NSSL_2MOM scheme instead, based on nssl_cccn namelist value. ELSEIF ( progn==1 .AND. mp_physics/=LINSCHEME .AND. mp_physics/=MORR_TWO_MOMENT & - .AND. mp_physics/=NSSL_2MOM .AND. mp_physics/=NSSL_2MOMCCN .AND. mp_physics/=NSSL_2MOMG ) THEN + .AND. .not. (mp_physics==NSSL_2MOM .and. config_flags%nssl_2moment_on==1) ) THEN call wrf_error_fatal( & "SETTINGS ERROR: Prognostic cloud droplet number can only be used with the mp_physics=LINSCHEME or MORRISON or NSSL_2MOM.") END IF @@ -1926,136 +1929,20 @@ SUBROUTINE microphysics_driver( & ! Call wrf_error_fatal( 'arguments not present for calling milbrandt3mom') ! ENDIF - CASE (NSSL_1MOM) - CALL wrf_debug(100, 'microphysics_driver: calling nssl1mom') - IF (PRESENT (QV_CURR) .AND. & - PRESENT (QC_CURR) .AND. & - PRESENT (QR_CURR) .AND. & - PRESENT (QI_CURR) .AND. & - PRESENT (QS_CURR) .AND. & - PRESENT (QG_CURR) .AND. & - PRESENT (QH_CURR) .AND. & - PRESENT (RAINNC ) .AND. PRESENT (RAINNCV) .AND. & -#if (EM_CORE==1) - PRESENT (SNOWNC ) .AND. PRESENT (SNOWNCV) .AND. & - PRESENT (HAILNC ) .AND. PRESENT (HAILNCV) .AND. & - PRESENT (GRAUPELNC).AND.PRESENT (GRAUPELNCV).AND. & -#endif - PRESENT ( W ) .AND. & - PRESENT (QVOLG_CURR) ) THEN - - CALL nssl_2mom_driver( & - ITIMESTEP=itimestep, & - TH=th, & - QV=qv_curr, & - QC=qc_curr, & - QR=qr_curr, & - QI=qi_curr, & - QS=qs_curr, & - QH=qg_curr, & - QHL=qh_curr, & -! CCW=qnc_curr, & -! CRW=qnr_curr, & -! CCI=qni_curr, & -! CSW=qns_curr, & -! CHW=qng_curr, & -! CHL=qnh_curr, & - VHW=qvolg_curr, & - PII=pi_phy, & - P=p, & - W=w, & - DZ=dz8w, & - DTP=dt, & - DN=rho, & - RAINNC = RAINNC, & - RAINNCV = RAINNCV, & - SNOWNC = SNOWNC, & - SNOWNCV = SNOWNCV, & - HAILNC = HAILNC, & - HAILNCV = HAILNCV, & - GRPLNC = GRAUPELNC, & - GRPLNCV = GRAUPELNCV, & - SR=SR, & - dbz = refl_10cm, & - diagflag = diagflag, & - ke_diag = ke_diag, & - IDS=ids,IDE=ide, JDS=jds,JDE=jde, KDS=kds,KDE=kde, & - IMS=ims,IME=ime, JMS=jms,JME=jme, KMS=kms,KME=kme, & - ITS=its,ITE=ite, JTS=jts,JTE=jte, KTS=kts,KTE=kte & - ) - ELSE - Call wrf_error_fatal( 'arguments not present for calling nssl_1mom') - ENDIF - - - CASE (NSSL_1MOMLFO) - CALL wrf_debug(100, 'microphysics_driver: calling nssl1mom') - IF (PRESENT (QV_CURR) .AND. & - PRESENT (QC_CURR) .AND. & - PRESENT (QR_CURR) .AND. & - PRESENT (QI_CURR) .AND. & - PRESENT (QS_CURR) .AND. & - PRESENT (QG_CURR) .AND. & - PRESENT (RAINNC ) .AND. PRESENT (RAINNCV) .AND. & -#if (EM_CORE==1) - PRESENT (SNOWNC ) .AND. PRESENT (SNOWNCV) .AND. & - PRESENT (GRAUPELNC).AND.PRESENT (GRAUPELNCV).AND. & -#endif - PRESENT ( W ) ) THEN - - - CALL nssl_2mom_driver( & - ITIMESTEP=itimestep, & - TH=th, & - QV=qv_curr, & - QC=qc_curr, & - QR=qr_curr, & - QI=qi_curr, & - QS=qs_curr, & - QH=qg_curr, & - PII=pi_phy, & - P=p, & - W=w, & - DZ=dz8w, & - DTP=dt, & - DN=rho, & - RAINNC = RAINNC, & - RAINNCV = RAINNCV, & - SNOWNC = SNOWNC, & - SNOWNCV = SNOWNCV, & - GRPLNC = GRAUPELNC, & - GRPLNCV = GRAUPELNCV, & - SR=SR, & - dbz = refl_10cm, & - diagflag = diagflag, & - ke_diag = ke_diag, & - IDS=ids,IDE=ide, JDS=jds,JDE=jde, KDS=kds,KDE=kde, & - IMS=ims,IME=ime, JMS=jms,JME=jme, KMS=kms,KME=kme, & - ITS=its,ITE=ite, JTS=jts,JTE=jte, KTS=kts,KTE=kte & - ) - ELSE - Call wrf_error_fatal( 'arguments not present for calling nssl_1momlfo') - ENDIF CASE (NSSL_2MOM) +#if (WRFPLUS != 1) & !defined( VAR4D ) + ! For all 1,2,3-moment options CALL wrf_debug(100, 'microphysics_driver: calling nssl2mom') IF (PRESENT (QV_CURR) .AND. & - PRESENT (QC_CURR) .AND. PRESENT (QNdrop_CURR) .AND. & - PRESENT (QR_CURR) .AND. PRESENT (QNR_CURR) .AND. & - PRESENT (QI_CURR) .AND. PRESENT (QNI_CURR) .AND. & - PRESENT (QS_CURR) .AND. PRESENT (QNS_CURR) .AND. & - PRESENT (QG_CURR) .AND. PRESENT (QNG_CURR) .AND. & - PRESENT (QH_CURR) .AND. PRESENT (QNH_CURR) .AND. & PRESENT (RAINNC ) .AND. PRESENT (RAINNCV) .AND. & #if (EM_CORE==1) PRESENT (SNOWNC ) .AND. PRESENT (SNOWNCV) .AND. & PRESENT (HAILNC ) .AND. PRESENT (HAILNCV) .AND. & PRESENT (GRAUPELNC).AND.PRESENT (GRAUPELNCV).AND. & #endif - PRESENT ( W ) .AND. & - PRESENT (QVOLG_CURR) .AND. F_QVOLG .AND. & - PRESENT (QVOLH_CURR) .AND. F_QVOLH ) THEN + PRESENT ( W ) ) THEN CALL nssl_2mom_driver( & @@ -2075,8 +1962,12 @@ SUBROUTINE microphysics_driver( & CSW=qns_curr, & CHW=qng_curr, & CHL=qnh_curr, & - VHW=qvolg_curr, & - VHL=qvolh_curr, & + VHW=qvolg_curr, f_vhw=F_QVOLG, & + VHL=qvolh_curr, f_vhl=F_QVOLH, & + ZRW=qzr_curr, f_zrw = f_qzr, & + ZHW=qzg_curr, f_zhw = f_qzg, & + ZHL=qzh_curr, f_zhl = f_qzh, & + cn=qnn_curr, f_cn=f_qnn, & PII=pi_phy, & P=p, & W=w, & @@ -2111,6 +2002,9 @@ SUBROUTINE microphysics_driver( & has_reqc=has_reqc, & ! ala G. Thompson has_reqi=has_reqi, & ! ala G. Thompson has_reqs=has_reqs, & ! ala G. Thompson + hail_maxk1=hail_maxk1, & + hail_max2d=hail_max2d, & + nwp_diagnostics=config_flags%nwp_diagnostics, & IDS=ids,IDE=ide, JDS=jds,JDE=jde, KDS=kds,KDE=kde, & IMS=ims,IME=ime, JMS=jms,JME=jme, KMS=kms,KME=kme, & ITS=its,ITE=ite, JTS=jts,JTE=jte, KTS=kts,KTE=kte & @@ -2119,165 +2013,7 @@ SUBROUTINE microphysics_driver( & ELSE Call wrf_error_fatal( 'arguments not present for calling nssl_2mom') ENDIF - - CASE (NSSL_2MOMG) - CALL wrf_debug(100, 'microphysics_driver: calling nssl2mom') - IF (PRESENT (QV_CURR) .AND. & - PRESENT (QC_CURR) .AND. PRESENT (QNdrop_CURR) .AND. & - PRESENT (QR_CURR) .AND. PRESENT (QNR_CURR) .AND. & - PRESENT (QI_CURR) .AND. PRESENT (QNI_CURR) .AND. & - PRESENT (QS_CURR) .AND. PRESENT (QNS_CURR) .AND. & - PRESENT (QG_CURR) .AND. PRESENT (QNG_CURR) .AND. & - PRESENT (RAINNC ) .AND. PRESENT (RAINNCV) .AND. & -#if (EM_CORE==1) - PRESENT (SNOWNC ) .AND. PRESENT (SNOWNCV) .AND. & - PRESENT (HAILNC ) .AND. PRESENT (HAILNCV) .AND. & - PRESENT (GRAUPELNC).AND.PRESENT (GRAUPELNCV).AND. & -#endif - PRESENT ( W ) .AND. & - PRESENT (QVOLG_CURR) .AND. F_QVOLG ) THEN - - - CALL nssl_2mom_driver( & - ITIMESTEP=itimestep, & - TH=th, & - QV=qv_curr, & - QC=qc_curr, & - QR=qr_curr, & - QI=qi_curr, & - QS=qs_curr, & - QH=qg_curr, & - ! CCW=qnc_curr, & - CCW=qndrop_curr, & - CRW=qnr_curr, & - CCI=qni_curr, & - CSW=qns_curr, & - CHW=qng_curr, & - VHW=qvolg_curr, & - PII=pi_phy, & - P=p, & - W=w, & - DZ=dz8w, & - DTP=dt, & - DN=rho, & - RAINNC = RAINNC, & - RAINNCV = RAINNCV, & - SNOWNC = SNOWNC, & - SNOWNCV = SNOWNCV, & - HAILNC = HAILNC, & - HAILNCV = HAILNCV, & - GRPLNC = GRAUPELNC, & - GRPLNCV = GRAUPELNCV, & - SR=SR, & - dbz = refl_10cm, & -#if ( WRF_CHEM == 1 ) - WETSCAV_ON = config_flags%wetscav_onoff == 1, & - EVAPPROD=evapprod,RAINPROD=rainprod, & -#endif - nssl_progn=nssl_progn, & - diagflag = diagflag, & - cu_used=cu_used, & - qrcuten=qrcuten, & ! hm - qscuten=qscuten, & ! hm - qicuten=qicuten, & ! hm - qccuten=qccuten, & ! hm - re_cloud=re_cloud, & - re_ice=re_ice, & - re_snow=re_snow, & - has_reqc=has_reqc, & ! ala G. Thompson - has_reqi=has_reqi, & ! ala G. Thompson - has_reqs=has_reqs, & ! ala G. Thompson - IDS=ids,IDE=ide, JDS=jds,JDE=jde, KDS=kds,KDE=kde, & - IMS=ims,IME=ime, JMS=jms,JME=jme, KMS=kms,KME=kme, & - ITS=its,ITE=ite, JTS=jts,JTE=jte, KTS=kts,KTE=kte & - ) - - ELSE - Call wrf_error_fatal( 'arguments not present for calling nssl_2momg') - ENDIF - - CASE (NSSL_2MOMCCN) - CALL wrf_debug(100, 'microphysics_driver: calling nssl_2momccn') - IF (PRESENT (QV_CURR) .AND. & - PRESENT (QC_CURR) .AND. PRESENT (QNDROP_CURR) .AND. & - PRESENT (QR_CURR) .AND. PRESENT (QNR_CURR) .AND. & - PRESENT (QI_CURR) .AND. PRESENT (QNI_CURR) .AND. & - PRESENT (QS_CURR) .AND. PRESENT (QNS_CURR) .AND. & - PRESENT (QG_CURR) .AND. PRESENT (QNG_CURR) .AND. & - PRESENT (QH_CURR) .AND. PRESENT (QNH_CURR) .AND. & - PRESENT (RAINNC ) .AND. PRESENT (RAINNCV) .AND. & -#if (EM_CORE==1) - PRESENT (SNOWNC ) .AND. PRESENT (SNOWNCV) .AND. & - PRESENT (HAILNC ) .AND. PRESENT (HAILNCV) .AND. & - PRESENT (GRAUPELNC).AND.PRESENT (GRAUPELNCV).AND. & #endif - PRESENT ( W ) .AND. & - PRESENT (QVOLG_CURR) .AND. F_QVOLG .AND. & - PRESENT (QVOLH_CURR) .AND. F_QVOLH .AND. & - PRESENT( QNN_CURR ) ) THEN - - - CALL nssl_2mom_driver( & - ITIMESTEP=itimestep, & - TH=th, & - QV=qv_curr, & - QC=qc_curr, & - QR=qr_curr, & - QI=qi_curr, & - QS=qs_curr, & - QH=qg_curr, & - QHL=qh_curr, & -! CCW=qnc_curr, & - CCW=qndrop_curr, & - CRW=qnr_curr, & - CCI=qni_curr, & - CSW=qns_curr, & - CHW=qng_curr, & - CHL=qnh_curr, & - VHW=qvolg_curr, & - VHL=qvolh_curr, & - cn=qnn_curr, & - PII=pi_phy, & - P=p, & - W=w, & - DZ=dz8w, & - DTP=dt, & - DN=rho, & - RAINNC = RAINNC, & - RAINNCV = RAINNCV, & - SNOWNC = SNOWNC, & - SNOWNCV = SNOWNCV, & - HAILNC = HAILNC, & - HAILNCV = HAILNCV, & - GRPLNC = GRAUPELNC, & - GRPLNCV = GRAUPELNCV, & - SR=SR, & - dbz = refl_10cm, & -#if ( WRF_CHEM == 1 ) - WETSCAV_ON = config_flags%wetscav_onoff == 1, & - EVAPPROD=evapprod,RAINPROD=rainprod,& -#endif - nssl_progn=nssl_progn, & - diagflag = diagflag, & - ke_diag = ke_diag, & - cu_used=cu_used, & - qrcuten=qrcuten, & ! hm - qscuten=qscuten, & ! hm - qicuten=qicuten, & ! hm - qccuten=qccuten, & ! hm - re_cloud=re_cloud, & - re_ice=re_ice, & - re_snow=re_snow, & - has_reqc=has_reqc, & ! ala G. Thompson - has_reqi=has_reqi, & ! ala G. Thompson - has_reqs=has_reqs, & ! ala G. Thompson - IDS=ids,IDE=ide, JDS=jds,JDE=jde, KDS=kds,KDE=kde, & - IMS=ims,IME=ime, JMS=jms,JME=jme, KMS=kms,KME=kme, & - ITS=its,ITE=ite, JTS=jts,JTE=jte, KTS=kts,KTE=kte & - ) - ELSE - Call wrf_error_fatal( 'arguments not present for calling nssl_2momccn') - ENDIF ! CASE (GSFCGCESCHEME) CALL wrf_debug ( 100 , 'microphysics_driver: calling GSFCGCE' ) diff --git a/phys/module_mp_nssl_2mom.F b/phys/module_mp_nssl_2mom.F index 10d5f1cd51..d89baf3571 100644 --- a/phys/module_mp_nssl_2mom.F +++ b/phys/module_mp_nssl_2mom.F @@ -1,8 +1,6 @@ !WRF:MODEL_LAYER:PHYSICS - -! prepocessed on "Sep 7 2021" at "19:37:43" - +! prepocessed on "Aug 14 2023" at "16:15:23" @@ -25,35 +23,33 @@ ! ! WENO references: Jiang and Shu, 1996, J. Comp. Phys. v. 126, 202-223; Shu 2003, Int. J. Comp. Fluid Dyn. v. 17 107-118; ! -! This module provides a 2-moment bulk microphysics scheme originally -! developed by Conrad Ziegler (Zeigler, 1985, JAS) and modified/upgraded in -! in Mansell, Zeigler, and Bruning (2010, JAS). Two-moment adaptive sedimentation -! follows Mansell (2010, JAS), using parameter infall = 4. -! -! Added info on graupel density and soaking is in Mansell and Ziegler (2013, JAS) -! -! Average graupel particle density is predicted, which affects fall speed as well. -! Hail density prediction is by default disabled in this version, but may be enabled -! at some point if there is interest. -! -! Maintainer: Ted Mansell, National Severe Storms Laboratory -! -! Microphysics References: -! -! Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small -! thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171-194, doi:10. 1175/2009JAS2965.1. -! -! Mansell, E. R. and C. L. Ziegler, 2013: Aerosol effects on simulated storm electrification and -! precipitation in a two-moment bulk microphysics model. J. Atmos. Sci., 70 (7), 2032-2050, -! doi:10.1175/JAS-D-12-0264.1. -! -! Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. -! Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 1487-1509. -! -! Sedimentation reference: -! -! Mansell, E. R., 2010: On sedimentation and advection in multimoment bulk microphysics. -! J. Atmos. Sci., 67, 3084-3094, doi:10.1175/2010JAS3341.1. +!! This module provides a 1/2/3-moment bulk microphysics scheme based on a combination of +!! Straka and Mansell (2005, JAM) and Zeigler (1985, JAS) and modified/upgraded in +!! in Mansell, Zeigler, and Bruning (2010, JAS). Two-moment adaptive sedimentation +!! follows Mansell (2010, JAS), using parameter infall = 4. +!! +!! Added info on graupel density and soaking is in Mansell and Ziegler (2013, JAS) +!! +!! Average graupel and hail particle densities are predicted, which affects fall speed as well. +!! +!! Maintainer: Ted Mansell, National Severe Storms Laboratory +!! +!! Microphysics References: +!! +!! Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small +!! thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171-194, doi:10. 1175/2009JAS2965.1. +!! +!! Mansell, E. R. and C. L. Ziegler, 2013: Aerosol effects on simulated storm electrification and +!! precipitation in a two-moment bulk microphysics model. J. Atmos. Sci., 70 (7), 2032-2050, +!! doi:10.1175/JAS-D-12-0264.1. +!! +!! Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. +!! Part I: Model development and preliminary testing. J. Atmos. Sci., 42, 1487-1509. +!! +!! Sedimentation reference: +!! +!! Mansell, E. R., 2010: On sedimentation and advection in multimoment bulk microphysics. +!! J. Atmos. Sci., 67, 3084-3094, doi:10.1175/2010JAS3341.1. ! ! Possible parameters to adjust: ! @@ -66,18 +62,26 @@ ! Fierro, A. O., E.R. Mansell, C. Ziegler and D. R. MacGorman 2013: The ! implementation of an explicit charging and discharge lightning scheme ! within the WRF-ARW model: Benchmark simulations of a continental squall line, a -! tropical cyclone and a winter storm. Monthly Weather Review, Volume 141, 2390-2415 +! tropical cyclone and a winter storm. Monthly Weather Review, Volume 141, 2390-2415 ! -! Mansell et al. 2005: Charge structure and lightning sensitivity in a simulated +! Mansell et al. 2005: Charge structure and lightning sensitivity in a simulated ! multicell thunderstorm. J. Geophys. Res., 110, D12101, doi:10.1029/2004JD005287 ! ! Note: Some parameters below apply to unreleased features. ! ! !--------------------------------------------------------------------- +! Apr. 2023 (WRF-4.6) +! - Update to 3-moment for rain, graupel, and hail +! - Change default graupel/hail fall speeds to icdx/icdxhl=6 (Milbrandt & Morrison 2013) +! and also set default ehw0=0.9 and ehlw0=0.9 to compensate for lower fall speeds. +! - Change default hail conversion to ihlcnh=-1, and then =1 for 2-mom or =3 for 3-mom, +! using wet growth diameter to convert large graupel +!--------------------------------------------------------------------- ! Sept. 2021: ! Fixes: -! Restored previous formulation of snow reflectivity, as it was realized that the last change incorrectly assumed a fixed density independent of size. Generally lower snow reflectivity values as a result (no effect on microphysics) +! Restored previous formulation of snow reflectivity, as it was realized that the last change incorrectly assumed a fixed +! density independent of size. Generally lower snow reflectivity values as a result (no effect on microphysics) ! Other: ! Generic fall speed coeffecients (axx,bxx) to accomodate future frozen drops category (no effect) ! Reordered collection coefficients (dab1lh) to be consistent (no effect) @@ -169,7 +173,6 @@ MODULE module_mp_nssl_2mom - IMPLICIT NONE public nssl_2mom_driver @@ -212,14 +215,13 @@ MODULE module_mp_nssl_2mom integer :: iusewetgraupel = 1 ! =1 to turn on use of QHW for graupel reflectivity (only for ZVDM -- mixedphase) ! =2 turn on for graupel density less than 300. only integer :: iusewethail = 0 ! =1 to turn on use of QHW for graupel reflectivity (only for ZVDM -- mixedphase) - integer :: iusewetsnow = 1 ! =1 to turn on diagnosed bright band; =2 'old' snow reflectivity (dry), =3 'old' snow dbz + brightband - + integer :: iusewetsnow = 0 ! =1 to turn on diagnosed bright band; =2 'old' snow reflectivity (dry), =3 'old' snow dbz + brightband ! microphysics real, private :: rho_qr = 1000., cnor = 8.0e5 ! cnor is set in namelist!! rain params real, private :: rho_qs = 100., cnos = 3.0e6 ! set in namelist!! snow params real, private :: rho_qh = 500., cnoh = 4.0e5 ! set in namelist!! graupel params - real, private :: rho_qhl= 900., cnohl = 4.0e4 ! set in namelist!! hail params + real, private :: rho_qhl= 800., cnohl = 4.0e4 ! set in namelist!! hail params real, private :: hdnmn = 170.0 ! minimum graupel density (for variable density graupel) real, private :: hldnmn = 500.0 ! minimum hail density (for variable density hail) @@ -232,8 +234,10 @@ MODULE module_mp_nssl_2mom real , private :: qcmincwrn = 2.0e-3 ! qc threshold for autonconversion (LFO; for 10ICE use qminrncw for ircnw != 5) real , private :: cwdiap = 20.0e-6 ! threshold diameter of cloud drops (Ferrier 1994 autoconversion) real , private :: cwdisp = 0.15 ! assume droplet dispersion parameter (can be 0.3 for maritime) - real , private :: ccn = 0.6e+09 ! set in namelist!! Central plains CCN value - real , public :: qccn ! ccn "mixing ratio" + real , private :: ccn = 0.6e+09 ! set in namelist!! Central plains CCN value + real , private :: ccnuf = 0 ! set in namelist!! Central plains CCN value + real , public :: qccn, qccnuf ! ccn "mixing ratio" + real , private :: old_qccn = -1.0 integer, private :: iauttim = 1 ! 10-ice rain delay flag real , private :: auttim = 300. ! 10-ice rain delay time real , private :: qcwmntim = 1.0e-5 ! 10-ice rain delay min qc for time accrual @@ -242,10 +246,17 @@ MODULE module_mp_nssl_2mom ! NMM WRF core does not have special boundary conditions for CCN, therefore set invertccn to true logical, parameter :: invertccn = .true. ! =true for base state of ccn=0, =false for ccn initialized in the base state #else - logical, parameter :: invertccn = .false. ! =true for base state of ccn=0, =false for ccn initialized in the base state + logical, private :: invertccn = .false. ! =true for base state of ccn=0, =false for ccn initialized in the base state #endif + logical :: switchccn = .false. + real :: old_cccn = -1.0 logical :: restoreccn = .true. ! whether or not to nudge CCN back to base state (qccn) (only applies if CCNA is NOT predicted) real :: ccntimeconst = 3600. ! time constant for CCN restore (either for CCNA or when restoreccn = true) + real, private :: restoreccnfrac = 1.0 ! fraction of evaporated droplets that restore CCN + real :: ufccntimeconst = 6.*3600. ! time constant for UFCCN decay (Blossey et al. 2018) + real :: ufbackground = 0.1e9 ! background ccnuf value (Blossey et al.) + logical :: decayufccn = .false. + integer :: i_uf_or_ccn = 0 ! 0 = ship adds UF; 1 = treat UF as regular ccn (add to qccn) ! sedimentation flags ! itfall -> 0 = 1st order fallout (other options removed) @@ -254,6 +265,7 @@ MODULE module_mp_nssl_2mom integer, private :: itfall = 0 integer, private :: iscfall = 1 integer, private :: irfall = -1 + integer, private :: isfall = 2 ! default limit with method II (more restrictive) logical, private :: do_accurate_sedimentation = .false. ! if true, recalculate fall speeds on sub time steps; (more expensive) ! if false, reuse fall speeds on multiple steps (can have a noticeable speedup) ! Mainly is an issue for small dz near the surface. @@ -264,14 +276,20 @@ MODULE module_mp_nssl_2mom ! 3 -> uses number-wgt for N and Z-weighted correction for N (Method I in Mansell, 2010 JAS) ! 4 -> Hybrid of 2 and 3: Uses minimum N from each method (z-wgt and m-wgt corrections) (Method I+II in Mansell, 2010 JAS) ! 5 -> uses number-wgt for N and uses average of N-wgt and q-wgt instead of Max. + integer :: imydiagalpha = 0 ! apply MY diagnostic shape parameter for fall speeds (1=for fall speed only; 2=also for microphysics rates) real, private :: rainfallfac = 1.0 ! factor to adjust rain fall speed (single moment only) real, private :: icefallfac = 1.0 ! factor to adjust ice fall speed real, private :: snowfallfac = 1.0 ! factor to adjust snow fall speed real, private :: graupelfallfac = 1.0 ! factor to adjust graupel fall speed real, private :: hailfallfac = 1.0 ! factor to adjust hail fall speed integer, private :: icefallopt = 3 ! 1= default, 2 = Ferrier ice fall speed; 3 = adjusted Ferrier (slightly high Vt) - integer, private :: icdx = 3 ! (graupel) 0=Ferrier; 1=leave drag coef. cd fixed; 2=vary by density, 4=set by user with cdxmin,cdxmax,etc. - integer, private :: icdxhl = 3 ! (hail) 0=Ferrier; 1=leave drag coef. cd fixed; 2=vary by density, 4=set by user with cdxmin,cdxmax,etc. + integer, private :: icdx = 6 ! (graupel) 0=Ferrier; 1=leave drag coef. cd fixed; 2=vary by density, 4=set by user with cdxmin,cdxmax,etc. + ! 6= Milbrandt and Morrison (2013) density-based fall speed + integer, private :: icdxhl = 6 ! (hail) 0=Ferrier; 1=leave drag coef. cd fixed; 2=vary by density, 4=set by user with cdxmin,cdxmax,etc. + ! 6= Milbrandt and Morrison (2013) density-based fall speed + real :: axh = 75.7149, bxh = 0.5 + real :: axf = 75.7149, bxf = 0.5 + real :: axhl = 206.984, bxhl = 0.6384 real , private :: cdhmin = 0.45, cdhmax = 0.8 ! defaults for graupel (icdx=4) real , private :: cdhdnmin = 500., cdhdnmax = 800.0 ! defaults for graupel (icdx=4) real , private :: cdhlmin = 0.45, cdhlmax = 0.6 ! defaults for hail (icdx=4) @@ -305,7 +323,7 @@ MODULE module_mp_nssl_2mom integer, private :: irimtim = 0 ! future use ! integer, private :: infdo = 1 ! 1 = calculate number-weighted fall speeds - integer, private :: irimdenopt = 1 ! = 1 for default Macklin; = 2 for experimental Cober and List (1993) + integer, private :: irimdenopt = 1 ! = 1 for default Heymsfield and Pflaum (1985); = 2 for experimental Cober and List (1993); = 3 Macklin real , private :: rimc1 = 300.0, rimc2 = 0.44 ! rime density coeff. and power (Default Heymsfield and Pflaum, 1985) real , private :: rimc3 = 170.0 ! minimum rime density real :: rimc4 = 900.0 ! maximum rime density @@ -320,7 +338,7 @@ MODULE module_mp_nssl_2mom ! (first nucleation is done with a KW sat. adj. step) integer, private :: issfilt = 0 ! flag to turn on filtering of supersaturation field integer, private :: icnuclimit = 0 ! limit droplet nucleation based on Konwar et al. (2012) and Chandrakar et al. (2016) - integer, private :: irenuc = 2 ! =1 to always allow renucleation of droplets within the cloud + integer, private :: irenuc = 2 ! =1 to always allow renucleation of droplets within the cloud (do no use, obsolete) ! =2 renucleation following Twomey/Cohard&Pinty ! =7 New renucleation that requires prediction of the number of activated nuclei ! i.e., not only at cloud base @@ -342,6 +360,7 @@ MODULE module_mp_nssl_2mom ! 0,2, 5.00e-10, 1, 0, 0, 0 : itype1,itype2,cimas0,icfn,ihrn,ibfc,iacr integer, private :: itype1 = 0, itype2 = 2 ! controls Hallett-Mossop process + integer, private :: in_freeze_rain_first = 0 ! =1 use IN to freezed rain drops (if none, then freeze droplets) integer, private :: icenucopt = 1 ! =1 Meyers/Ferrier primary ice nucleation; =2 Thompson/Cooper, =3 Phillips (Meyers/Demott), =4 DeMott (2010) real, private :: naer = 1.0e6 ! background large aerosol conc. for DeMott integer, private :: icfn = 2 ! contact freezing: 0 = off; 1 = hack (ok for single moment); 2 = full Cotton/Meyers version @@ -352,7 +371,9 @@ MODULE module_mp_nssl_2mom integer, private :: iremoveqwfrz = 1 ! Whether to remove (=1) or not (=0) the newly-frozen cloud droplets (ibfc=1) from the CWC used for charge separation integer, private :: iacr = 2 ! Flag for drop contact freezing with crytals ! (0=off; 1=drops > 500micron diameter; 2 = > 300micron) + integer, private :: icrcev = 1 ! 1 = old crcev; 2 = crcev scaled by vtrain ratio (num/mass); 3 = set to zero integer, private :: icracr = 1 ! Flag to turn rain self-collection on/off (=0 to turn off) + integer, private :: icracrthresh = 1 ! For rain self-coll. thresh. use: 1 = mean diam of 2mm; 2 = rain median volume diam of 1.9mm integer, private :: ibfr = 2 ! Flag for Bigg freezing conversion of freezing drops to graupel ! (1=min graupel size is vr1mm; 2=use min size of dfrz, 5= as for 2 and apply dbz conservation) integer, private :: ibiggopt = 2 ! 1 = old Bigg; 2 = experimental Bigg (only for imurain = 1, however) @@ -379,9 +400,9 @@ MODULE module_mp_nssl_2mom integer, private :: ierw = 1 ! for single-moment rain (LFO/Z) integer, private :: iehr0c = 0 ! 0 -> no collection for T > 0C; 1 -> turn on collection/shedding for T > 0C integer, private :: iehlr0c = 0 ! 0 -> no collection for T > 0C; 1 -> turn on collection/shedding for T > 0C - real , private :: ehw0 = 0.5 ! constant or max assumed graupel-droplet collection efficiency + real , private :: ehw0 = 0.9 ! 0.5 ! constant or max assumed graupel-droplet collection efficiency real , private :: erw0 = 1.0 ! constant assumed rain-droplet collection efficiency - real , private :: ehlw0 = 0.75 ! constant or max assumed hail-droplet collection efficiency + real , private :: ehlw0 = 0.9 ! 0.75 ! constant or max assumed hail-droplet collection efficiency real , private :: efw0 = 0.5 ! constant or max assumed graupel-droplet collection efficiency real :: ehr0 = 1.0 ! constant or max assumed graupel-rain collection efficiency real :: efr0 = 1.0 ! constant or max assumed graupel-rain collection efficiency @@ -408,15 +429,19 @@ MODULE module_mp_nssl_2mom ! set eii1 = 0 to get a constant value of eii0 real , private :: eii0hl = 0.2 ,eii1hl = 0.0 ! hail-crystal coll. eff. parameters: eii0hl*exp(eii1hl*min(temcg(mgs),0.0)) ! set eii1hl = 0 to get a constant value of eii0hl + real, private :: ewi_dcmin = 15.0e-06 ! minimum droplet diameter for nonzero ewi + real, private :: ewi_dimin = 30.0e-06 ! minimum ice crystal diameter for nonzero ewi real , private :: eri0 = 0.1 ! rain efficiency to collect ice crystals real , private :: eri_cimin = 10.e-6 ! minimum ice crystal diameter for collection by rain real , private :: esi0 = 0.1 ! linear factor in snow-ice collection efficiency real , private :: ehs0 = 0.1, ehs1 = 0.1 ! graupel-snow coll. eff. parameters: ehs0*exp(ehs1*min(temcg(mgs),0.0)) ! set ehs1 = 0 to get a constant value of ehs0 - real , private :: ess0 = 1.0, ess1 = 0.05 ! snow aggregation coefficients: ess0*exp(ess1*min(temcg(mgs),0.0)) + integer :: iessopt = 1 ! 1 = Original (no factor); 2 = factor based on wvel; 3 = factor based on SSI + ! 4 = as 3 but sets min factor of 0.1 and goes to full value at 0.5% SSI + real , private :: ess0 = 0.5, ess1 = 0.05 ! snow aggregation coefficients: ess0*exp(ess1*min(temcg(mgs),0.0)) ! set ess1 = 0 to get a constant value of ess0 - real , private :: esstem1 = -25. ! lower temperature where snow aggregation turns on - real , private :: esstem2 = -20. ! higher temperature for linear ramp of ess from zero at esstem1 to formula value at esstem2 + real , private :: esstem1 = -15. ! lower temperature where snow aggregation turns on + real , private :: esstem2 = -10. ! higher temperature for linear ramp of ess from zero at esstem1 to formula value at esstem2 real , private :: essrmax = 0.02 ! maximum snow radius (meters) for csacs real , private :: essfrac1 = 0.5 ! snow mass fraction 1 for aggregation roll-off real , private :: essfrac2 = 0.75 ! snow mass fraction 2 for aggregation roll-off @@ -447,11 +472,13 @@ MODULE module_mp_nssl_2mom ! 0 = no condensation on rain; 1 = bulk condensation on rain integer, parameter, private :: icond = 1 ! (Z only) icond = 1 calculates ice deposition (crystals and snow) BEFORE droplet condensation ! icond = 2 does not work (intended to calc. dep in loop with droplet cond.) + integer, private :: iqis0 = 2 ! = 1 for normal qis; = 2 to set qis to use T = 0C when T > 0C real , private :: dfrz = 0.15e-3 ! 0.25e-3 ! minimum diameter of frozen drops from Bigg freezing (used for vfrz) for iacr > 1 ! and for ciacrf for iacr=4 real , private :: dmlt = 3.0e-3 ! maximum diameter for rain melting from graupel and hail real , private :: dshd = 1.0e-3 ! nominal diameter for rain drops shed from graupel/hail + integer, private :: ivshdgs = 1 ! 0 = use 1mm for all shedding (non-mixedphase); 1 = use vshdgs with sheddiam integer, private :: ished2cld = 0 ! 1: Send shed liquid (from wet growth) to cloud droplets integer, private :: ihmlt = 2 ! 1=old melting with vmlt; 2=new melting using mean volume diam of graupel/hail @@ -475,6 +502,7 @@ MODULE module_mp_nssl_2mom real, private :: qhdpvdn = -1. real, private :: qhacidn = -1. + integer, private :: iraintypes = 0 logical, private :: mixedphase = .false. ! .false.=off, true=on to include mixed phase graupel integer, private :: imixedphase = 0 logical, private :: qsdenmod = .false. ! true = modify snow density by linear interpolation of snow and rain density @@ -506,17 +534,23 @@ MODULE module_mp_nssl_2mom real, parameter :: alpharmax = 8. ! limited for rwvent calculation - integer, private :: ihlcnh = 1 ! which graupel -> hail conversion to use + integer, private :: ihlcnh = -1 ! which graupel -> hail conversion to use ! 1 = Milbrandt and Yau (2005) using Ziegler 1985 wet growth diameter ! 2 = Straka and Mansell (2005) conversion using size threshold + ! 3 = Conversion using wet growth diameter real, private :: hlcnhdia = 1.e-3 ! threshold diameter for graupel -> hail conversion for ihlcnh = 1 option. real, private :: hlcnhqmin = 0.1e-3 ! minimum graupel mass content for graupel -> hail conversion (ihlcnh = 1) - real , private :: hldia1 = 20.0e-3 ! threshold diameter for graupel -> hail conversion for ihlcnh = 2 option. + real , private :: hldia1 = 10.0e-3 ! threshold diameter for graupel -> hail conversion for ihlcnh = 2 option. + integer, private :: incwet = 0 ! flag to do wet growth only on D > D_wet integer, private :: iusedw = 0 ! flag to use experimental wet growth ice diameter for gr -> hl conversion (=1 turns on) - real , private :: dwmin = 0.0 ! Minimum diameter with iusedw (can stay at 0 or be set to something larger) + real , private :: dwmin = 5.0e-3 ! Minimum diameter with iusedw (can stay at 0 or be set to something larger) + real , private :: dwetmin = 5.0e-3 ! Minimum diameter with iusedw (can stay at 0 or be set to something larger) + real , private :: dwmax = 15.e-3 ! for ihlcnh, always convert this size and larger whether or not there is wet growth real , private :: dwtempmin = 242. ! lowest temperature to allow wet growth conversion to hail real , private :: dwehwmin = 0. ! Minimum ehw to use to find wet growth diameter (if > ehw0, then wet growth diam becomes smaller) real , private :: dg0thresh = 0.15 ! graupel wet growth diameter above which we say do not bother + integer :: ifddenfac = 0 ! = 1 to use density threshold to count FD as GR when converting to HL + real :: fddenthresh = 500. ! if ifddenfac > 0, then hail from FD with lower density are considered to come from graupel integer :: icvhl2h = 0 ! allow conversion of hail back to graupel when hail density gets close to minimum allowed integer, private :: imurain = 1 ! 3 for gamma-volume, 1 for gamma-diameter DSD for rain. @@ -533,6 +567,8 @@ MODULE module_mp_nssl_2mom ! = 1 use mean diameter for breakup ! = 2 use maximum mass diameter for breakup ! = 3 use mass-weighted diameter for breakup + integer :: iraintailbreak = 0 ! 1 = on + real :: draintail = 8.e-3 ! starting size for rain breakup integer, private :: dmrauto = 0 ! = -1 no limiter on crcnw ! = 0 limit crcnw when qr > 1.2*L (Cohard-Pinty 2002) @@ -540,7 +576,7 @@ MODULE module_mp_nssl_2mom ! = 2 DTD mass-weighted version based on MY code ! = 3 Milbrandt version (from Cohard and Pinty code integer :: dmropt = 0 ! extra option for crcnw - integer :: dmhlopt = 1 ! options for graupel -> conversion + integer :: dmhlopt = 0 ! options for graupel -> hail conversion integer :: irescalerainopt = 3 ! 0 = default option ! 1 = qx(mgs,lc) > qxmin(lc) ! 2 = qx(mgs,lc) > qxmin(lc) .and. wvel(mgs) < 3.0 @@ -557,6 +593,7 @@ MODULE module_mp_nssl_2mom integer :: ivhmltsoak = 1 ! 0=off, 1=on : flag to simulate soaking (graupel/hail) during melting ! when liquid fraction is not predicted + logical, private :: iwetsoak = .true. ! soak and freeze during wet growth or not integer, private :: ioldlimiter = 0 ! test switch for new(=0) or old(=1) size limiter at the end of GS for 3-moment categories integer, private :: isnowfall = 2 ! Option for choosing between snow fall speed parameters ! 1 = original Zrnic et al. (Mansell et al. 2010) @@ -589,9 +626,12 @@ MODULE module_mp_nssl_2mom integer, private :: ibinnum = 2 ! number of bins for melting of smaller ice (for ibinhmlr = 1) integer, private :: iqhacrmlr = 1 ! turn on/off qhacrmlr integer, private :: iqhlacrmlr = 1 ! turn on/off qhlacrmlr + integer, private :: iqhacwshr = 1 ! turn on/off qhacw for T > 0 + integer, private :: iqhlacwshr = 1 ! turn on/off qhlacw for T > 0 real, private :: binmlrmxdia = 40.e-3 ! threshold diameter (graupel/hail) to switch bin-bulk melting to use standard chmlr real, private :: binmlrzrrfac = 1.0 ! factor for reflectivity change ice that sheds while melting real, private :: snowmeltdia = 0 ! If nonzero, sets the size of rain drops from melting snow. + real, private :: alphasmlr0 = 14.0 ! shape parameter for drops formed from melting/shedding snow real, private :: delta_alphamlr = 0.5 ! offset from alphamax at which melting does not further collapse the shape parameter integer :: iqvsopt = 0 ! =0 use old default for tabqvs; =1 use Bolton formulation (Rogers and Yau) @@ -602,6 +642,7 @@ MODULE module_mp_nssl_2mom ! 3 = only add 1.5*cxmin to number concentration (allow max size to apply) ! 4 = add droplets with minimum radius of 20 microns real :: maxsupersat = 1.9 ! maximum supersaturation ratio, above which a saturation adustment is done + real :: maxlowtempss = 1.08 ! Sat. ratio threshold for allowing droplet nucleation at T < tfrh real :: ssmxuf = 4.0 ! supersaturation at which to start using "ultrafine" CCN (if ccnuf > 0.) @@ -732,6 +773,7 @@ MODULE module_mp_nssl_2mom real da1 (lc:lqmx) ! collection coefficients from Seifert 2005 real bb (lc:lqmx) + ! put ipelec here for now.... integer :: ipelec = 0 integer :: isaund = 0 @@ -757,8 +799,8 @@ MODULE module_mp_nssl_2mom double precision, parameter :: dgam = 0.01, dgami = 100. double precision gmoi(0:ngm0) ! ,gmod(0:ngm1,0:ngm2),gmdi(0:ngm1,0:ngm2) - integer, parameter :: nqiacralpha = 240 !480 ! 240 ! 120 ! 15 - integer, parameter :: nqiacrratio = 100 ! 500 !50 ! 25 + integer, parameter :: nqiacralpha = 300 !480 ! 240 ! 120 ! 15 + integer, parameter :: nqiacrratio = 400 ! 500 !50 ! 25 ! real, parameter :: maxratiolu = 25. real, parameter :: maxratiolu = 100. ! 25. real, parameter :: maxalphalu = 15. @@ -775,6 +817,10 @@ MODULE module_mp_nssl_2mom ! real :: ziacrratio(0:nqiacrratio,0:nqiacralpha) ! double precision :: gamxinflu(0:nqiacrratio,0:nqiacralpha,12,2) ! last index for graupel (1) or hail (2) +! for 3-moment collection coefficients + real, save :: dab0lu(ialpstart:nqiacralpha,ialpstart:nqiacralpha,lc:lqmx,lc:lqmx) ! collection coefficients from Seifert 2005 + real, save :: dab1lu(ialpstart:nqiacralpha,ialpstart:nqiacralpha,lc:lqmx,lc:lqmx) ! collection coefficients from Seifert 2005 + integer, parameter :: ngdnmm = 9 real :: mmgraupvt(ngdnmm,3) ! Milbrandt and Morrison (2013) fall speed coefficients for graupel/hail @@ -810,7 +856,6 @@ MODULE module_mp_nssl_2mom ! ! constants ! - real, parameter :: cp608 = 0.608 ! constant used in conversion of T to Tv real, parameter :: ar = 841.99666 ! rain terminal velocity power law coefficient (LFO) real, parameter :: br = 0.8 ! rain terminal velocity power law coefficient (LFO) real, parameter :: aradcw = -0.27544 ! @@ -827,12 +872,14 @@ MODULE module_mp_nssl_2mom ! new values for cs and ds real, parameter :: cs = 12.42 ! snow terminal velocity power law coefficient real, parameter :: ds = 0.42 ! snow terminal velocity power law coefficient + real, parameter :: cp608 = 0.608 ! constant used in conversion of T to Tv + + real, parameter :: gr = 9.8 + real, parameter :: pi = 3.141592653589793 real, parameter :: piinv = 1./pi real, parameter :: pid4 = pi/4.0 - real, parameter :: gr = 9.8 - ! ! max and min mean volumes ! @@ -853,7 +900,7 @@ MODULE module_mp_nssl_2mom ! parameter( xvcmn=4.188e-18 ) ! mks min volume = 3 micron radius real, parameter :: xvcmn=0.523599*(2.*cwradn)**3 ! mks min volume = 2.5 micron radius - real, parameter :: xvcmx=0.523599*(2.*xcradmx)**3 ! mks min volume = 2.5 micron radius + real, parameter :: xvcmx=0.523599*(2.*xcradmx)**3 ! mks max volume = 60 micron radius real, parameter :: cwmasn = 1000.*xvcmn ! minimum mass, defined by radius of 5.0e-6 real, parameter :: cwmasx = 1000.*xvcmx ! maximum mass, defined by radius of 50.0e-6 real, parameter :: cwmasn5 = 1000.*0.523599*(2.*5.0e-6)**3 ! 5.23e-13 @@ -895,25 +942,28 @@ MODULE module_mp_nssl_2mom real, parameter :: cbwbolton = 29.65 ! constants for Bolton formulation real, parameter :: cawbolton = 17.67 - real, parameter :: tfr = 273.15, tfrh = 233.15 + real, parameter :: tfrh = 233.15 + real, parameter :: tfr = 273.15 real, parameter :: cp = 1004.0, rd = 287.04 - real, parameter :: cpi = 1./cp - real, parameter :: cap = rd/cp, poo = 1.0e+05 - real, parameter :: rw = 461.5 ! gas const. for water vapor + real, parameter :: cpl = 4190.0 + real, parameter :: cpigb = 2106.0 + real, parameter :: cpi = 1./cp + real, parameter :: cap = rd/cp + real, parameter :: tfrcbw = tfr - cbw + real, parameter :: tfrcbi = tfr - cbi + real, parameter :: rovcp = rd/cp + real :: rdorv = 0.622 + real, parameter :: poo = 1.0e+05 real, parameter :: advisc0 = 1.832e-05 ! reference dynamic viscosity (SMT; see Beard & Pruppacher 71) real, parameter :: advisc1 = 1.718e-05 ! dynamic viscosity constant used in thermal conductivity calc real, parameter :: tka0 = 2.43e-02 ! reference thermal conductivity - real, parameter :: tfrcbw = tfr - cbw - real, parameter :: tfrcbi = tfr - cbi ! GHB: Needed for eqtset=2 in cm1 ! REAL, PRIVATE :: cv = cp - rd - real, private, parameter :: cv = 717.0 ! specific heat at constant volume - air - REAL, PRIVATE, parameter :: cvv = 1408.5 - REAL, PRIVATE, parameter :: cpl = 4190.0 - REAL, PRIVATE, parameter :: cpigb = 2106.0 + real, private, parameter :: cv = 717.0 ! specific heat at constant volume - air + REAL, PRIVATE, parameter :: cvv = 1408.5 ! GHB real, parameter :: bfnu0 = (rnu + 2.0)/(rnu + 1.0) @@ -942,10 +992,12 @@ MODULE module_mp_nssl_2mom logical, parameter :: do_satadj_for_wrfchem = .true. + integer, parameter :: ac_opt = 0 ! option flag for alternate aerosol (for NUWRF only) + logical, private :: nuaccoinp = .false. ! Note to users: Many of these options are for development and not guaranteed to perform well. ! Some may not be functional depending on the version of the code. -! Some may be useful for ensemble physics diversity. Feel free to contact me if you have questions +! Some may be useful for ensemble physics diversity. Feel free to contact Ted Mansell if you have questions ! in that regard. NAMELIST /nssl_mp_params/ & ndebug, ncdebug,& @@ -955,7 +1007,7 @@ MODULE module_mp_nssl_2mom idbzci, & vtmaxsed, & itfall,iscfall, & - infall, & + infall,irfall,isfall, & rssflg, & sssflg, & hssflg, & @@ -966,12 +1018,15 @@ MODULE module_mp_nssl_2mom icnuclimit, & irenuc, & restoreccn, ccntimeconst, cck, & + decayufccn, ufccntimeconst, & + switchccn, old_cccn, & ciintmx, & itype1, itype2, & - icenucopt, & + icenucopt, in_freeze_rain_first, & naer, & icfn, & ibfc, iacr, icracr, & + icracrthresh, & cwfrz2snowfrac, cwfrz2snowratio, & ibfr, & ibiggopt, & @@ -987,7 +1042,7 @@ MODULE module_mp_nssl_2mom eri_cimin, & eii0hl, eii1hl, & ehs0, ehs1, & - ess0, ess1, & + ess0, ess1, iessopt, & esstem1,esstem2, & ircnw, qminrncw,& ! single-moment only iglcnvi, & @@ -1013,6 +1068,7 @@ MODULE module_mp_nssl_2mom hailfallfac, & icefallopt, & icdx,icdxhl, & + axh,bxh,axf,bxf,axhl,bxhl, & cdhmin, cdhmax, & cdhdnmin, cdhdnmax, & cdhlmin, cdhlmax, & @@ -1047,7 +1103,7 @@ MODULE module_mp_nssl_2mom rescale_low_alphah, & rescale_low_alphahl, & rescale_high_alpha, & - ihlcnh, hldia1,iusedw, dwehwmin, dwmin, dwtempmin, & + ihlcnh, hldia1,iusedw, dwehwmin, dwmin, dwmax, dwtempmin, dg0thresh, & icvhl2h, hldnmn,hdnmn, & hlcnhdia, hlcnhqmin, & isedonly, & @@ -1080,7 +1136,6 @@ MODULE module_mp_nssl_2mom delta_alphamlr, & iqvsopt, & maxsupersat, & - charging_border, & do_accurate_sedimentation, interval_sedi_vt ! ##################################################################### ! ##################################################################### @@ -1106,10 +1161,10 @@ END FUNCTION fqis -! ##################################################################### -! ##################################################################### +! ##################################################################### +! ##################################################################### SUBROUTINE nssl_2mom_init( & & ims,ime, jms,jme, kms,kme, nssl_params, ipctmp, mixphase,ihvol,idoniconlytmp, & & nssl_graupelfallfac, & @@ -1119,7 +1174,15 @@ SUBROUTINE nssl_2mom_init( & & nssl_icdx, & & nssl_icdxhl, & & nssl_icefallfac, & - & nssl_snowfallfac & + & nssl_snowfallfac, & + & nssl_cccn, & + & nssl_ufccn, & + & nssl_alphah, & + & nssl_alphahl, & + & nssl_alphar, & + & nssl_density_on, nssl_hail_on, nssl_ccn_on, nssl_icecrystals_on, ccn_is_ccna, & + & infileunit, & + & myrank, mpiroot & ) implicit none @@ -1130,21 +1193,35 @@ SUBROUTINE nssl_2mom_init( & & nssl_ehw0, & & nssl_ehlw0, & & nssl_icefallfac, & - & nssl_snowfallfac + & nssl_snowfallfac, & + & nssl_cccn, & + & nssl_alphah, & + & nssl_alphahl, & + & nssl_alphar integer, intent(in), optional :: & & nssl_icdx, & - & nssl_icdxhl + & nssl_icdxhl, myrank, mpiroot, & + & nssl_ufccn + logical, intent(in), optional :: nssl_density_on, nssl_hail_on, nssl_ccn_on, nssl_icecrystals_on + integer, intent(inout), optional :: ccn_is_ccna - integer, intent(in) :: ims,ime, jms,jme, kms,kme - real, intent(in), dimension(20) :: nssl_params + integer, intent(in),optional :: infileunit + integer, intent(in), optional :: ims,ime, jms,jme, kms,kme + real, intent(in), dimension(20), optional :: nssl_params - integer, intent(in) :: ipctmp,mixphase,ihvol + + + integer, intent(in) :: ipctmp,mixphase + integer, optional, intent(in) :: ihvol logical, optional, intent(in) :: idoniconlytmp + integer :: igvol_local = 1 logical :: wrote_namelist = .false. logical :: wrf_dm_on_monitor + integer :: hail_on = -1, density_on = -1, icecrystals_on = 1 + integer :: ccn_on = -1 double precision :: arg real :: temq @@ -1152,20 +1229,57 @@ SUBROUTINE nssl_2mom_init( & integer :: i,il,j,l integer :: ltmp integer :: isub - real :: bxh,bxhl + real :: bxh1,bxhl1 real :: alp,ratio double precision :: x,y,y2,y7 logical :: turn_on_ccna, turn_on_cina + integer :: iufccn = 0 integer :: istat + + real :: alpjj, alpii, xnuii, xnujj + integer :: ii, jj turn_on_ccna = .false. turn_on_cina = .false. + +! IF ( present( igvol ) ) THEN +! igvol_local = igvol +! ENDIF + + IF ( present( nssl_hail_on ) ) THEN + IF ( nssl_hail_on ) THEN + hail_on = 1 + ELSE + hail_on = 0 + ENDIF + ENDIF + + IF ( present( nssl_density_on ) ) THEN + IF ( nssl_density_on ) THEN + density_on = 1 + ELSE + density_on = 0 + ENDIF + ENDIF + + IF ( present( nssl_icecrystals_on ) ) THEN + IF ( nssl_icecrystals_on ) THEN + icecrystals_on = 1 + ELSE + icecrystals_on = 0 + ! renucfrac = 1.0 ! why was this set to 1? + ffrzs = 1.0 + ENDIF + ENDIF + + ! ! set some global values from namelist input ! + IF ( present( nssl_params ) ) THEN ccn = Abs( nssl_params(1) ) alphah = nssl_params(2) alphahl = nssl_params(3) @@ -1176,36 +1290,77 @@ SUBROUTINE nssl_2mom_init( & rho_qh = nssl_params(8) rho_qhl = nssl_params(9) rho_qs = nssl_params(10) - + IF ( Nint(nssl_params(13)) == 1 ) THEN + ! hack to switch CCN field to CCNA (activated ccn) +! invertccn = .true. + turn_on_ccna = .true. + irenuc = 7 + ENDIF + ccnuf = Abs( nssl_params(14) ) + IF ( present(nssl_ufccn) ) iufccn = nssl_ufccn + + ENDIF ! ipelec = Nint(nssl_params(11)) ! isaund = Nint(nssl_params(12)) + + IF ( present(nssl_graupelfallfac) ) graupelfallfac = nssl_graupelfallfac IF ( present(nssl_hailfallfac) ) hailfallfac = nssl_hailfallfac - IF ( present(nssl_ehw0) ) ehw0 = nssl_ehw0 - IF ( present(nssl_ehlw0) ) ehlw0 = nssl_ehlw0 + IF ( present(nssl_ehw0) ) THEN + IF ( nssl_ehw0 > 0.0 ) ehw0 = nssl_ehw0 + ENDIF + IF ( present(nssl_ehlw0) ) THEN + IF ( nssl_ehlw0 > 0.0 ) ehlw0 = nssl_ehlw0 + ENDIF IF ( present(nssl_icdx) ) icdx = nssl_icdx IF ( present(nssl_icdxhl) ) icdxhl = nssl_icdxhl IF ( present(nssl_icefallfac) ) icefallfac = nssl_icefallfac IF ( present(nssl_snowfallfac) ) snowfallfac = nssl_snowfallfac + IF ( present(nssl_cccn) ) THEN + IF (nssl_cccn > 1 ) ccn = nssl_cccn + ENDIF + IF ( present(nssl_alphah) ) THEN + IF ( nssl_alphah > -1. ) alphah = nssl_alphah + ENDIF + IF ( present(nssl_alphahl) ) THEN + IF ( nssl_alphahl > -1. ) alphahl = nssl_alphahl + ENDIF + IF ( present(nssl_alphar) ) THEN + IF ( nssl_alphar > -1.0 ) alphar = nssl_alphar + ENDIF - IF ( Nint(nssl_params(13)) == 1 ) THEN - ! hack to switch CCN field to CCNA (activated ccn) -! invertccn = .true. - turn_on_ccna = .true. - irenuc = 7 + ipconc = ipctmp + + IF ( ipconc < 5 ) THEN + ihlcnh = 0 + ENDIF + + IF ( ihlcnh <= 0 ) THEN + IF ( ipconc == 5 ) THEN + ihlcnh = 3 + ELSEIF ( ipconc >= 6 ) THEN + ihlcnh = 3 ENDIF + ENDIF - IF ( .false. ) THEN ! set to true to enable internal namelist read + + IF ( .true. ) THEN ! set to true to enable internal namelist read open(15,file='namelist.input',status='old',form='formatted',action='read') rewind(15) read(15,NML=nssl_mp_params,iostat=istat) close(15) IF ( istat /= 0 ) THEN - write(0,*) 'READ_NAMELIST: PROBLEM WITH NSSL_MP_PARAMS namelist: not found or bad token' +#ifdef WRF_ELEC + IF ( wrf_dm_on_monitor() ) THEN + write(0,*) 'NSSL_2MOM_INIT: PROBLEM WITH NSSL_MP_PARAMS namelist: not found or bad token' + ENDIF +#else + ! write(0,*) 'NSSL_2MOM_INIT: PROBLEM WITH NSSL_MP_PARAMS namelist: not found or bad token' +#endif ENDIF IF ( wrf_dm_on_monitor() .and. .not. wrote_namelist ) THEN open(15,file='namelist.output',status='old',action='readwrite', position='append',form='formatted') @@ -1217,8 +1372,42 @@ SUBROUTINE nssl_2mom_init( & + IF ( iufccn > 0 ) THEN ! make sure to use option that uses UF ccn + irenuc = 7 + IF ( ccnuf <= 0.0 ) decayufccn = .true. ! assume surface emission and need decay + IF ( i_uf_or_ccn > 0 ) THEN + ufbackground = 0.0 + ccntimeconst = ufccntimeconst + ENDIF + ENDIF + + IF ( present( nssl_ccn_on ) ) THEN + IF ( nssl_ccn_on ) THEN + ccn_on = 1 + ELSE + ccn_on = 0 + irenuc = 2 + ENDIF + ENDIF + IF ( irenuc >= 5 ) THEN turn_on_ccna = .true. + IF ( present( nssl_ccn_on ) ) THEN + IF ( .not. nssl_ccn_on ) THEN + write(0,*) 'NSSL_MP Error: Must have nssl_ccn_on=1 for irenuc >= 5!' + STOP + ENDIF + ENDIF + ENDIF + + IF ( present( ccn_is_ccna ) .and. ccn_on == 1 ) THEN + IF ( ccn_is_ccna > 0 ) THEN + turn_on_ccna = .true. + ELSE + IF ( irenuc >= 5 ) THEN + ccn_is_ccna = 1 + ENDIF + ENDIF ENDIF cwccn = ccn @@ -1232,24 +1421,41 @@ SUBROUTINE nssl_2mom_init( & lh = lh + 1 lhl = lhl + 1 ENDIF - IF ( ihvol <= -1 .or. ihvol == 2 ) THEN - IF ( ihvol == -1 .or. ihvol == -2 ) THEN - lhab = lhab - 1 ! turns off hail - lhl = 0 - ! past me thought it would be a good idea to change graupel factors when hail is off.... - ! ehw0 = 0.75 - ! iehw = 2 - ! dfrz = Max( dfrz, 0.5e-3 ) - ENDIF - IF ( ihvol == -2 .or. ihvol == 2 ) THEN ! ice crystals are turned off - ! a value of -3 means to turn off ice crystals but turn on hail - renucfrac = 1.0 - ffrzs = 1.0 - ! idoci = 0 ! try this later + IF ( hail_on == -1 ) THEN ! hail_on is not set + hail_on = 1 + IF ( ihvol <= -1 .or. ihvol == 2 ) THEN + IF ( ihvol == -1 .or. ihvol == -2 ) THEN + lhab = lhab - 1 ! turns off hail + lhl = 0 + hail_on = 0 + ! past me thought it would be a good idea to change graupel factors when hail is off.... + ! ehw0 = 0.75 + ! iehw = 2 + ! dfrz = Max( dfrz, 0.5e-3 ) + ENDIF + IF ( ihvol == -2 .or. ihvol == 2 .or. icecrystals_on == 0 ) THEN ! ice crystals are turned off + ! a value of 2? means to turn off ice crystals but turn on hail + ! renucfrac = 1.0 ! why? + ffrzs = 1.0 + ! idoci = 0 ! try this later + ENDIF + ENDIF + + ELSE ! hail_on is set + IF ( hail_on == 0 ) THEN + lhab = lhab - 1 ! turns off hail + lhl = 0 + ELSE + ! assume default that hail is on ENDIF ENDIF + + IF ( density_on == -1 ) THEN ! density flag not set, so default is to predict it + density_on = 1 + ENDIF + -! write(0,*) 'wrf_init: lhab,lhl = ',lhab,lhl +! write(0,*) 'wrf_init: lhab,lhl,hail_on,density_on = ',lhab,lhl,hail_on,density_on ! IF ( ipelec > 0 ) idonic = .true. @@ -1276,29 +1482,42 @@ SUBROUTINE nssl_2mom_init( & bx(lr) = 0.85 ax(lr) = 1647.81 fx(lr) = 135.477 + IF ( icdx == 6 ) THEN bx(lh) = 0.6 ! Milbrandt and Morrison (2013) for density of 550. ax(lh) = 157.71 - ELSEIF ( icdx > 0 ) THEN +! ELSEIF ( icdx == 1 ) THEN +! bx(lh) = bxh +! ax(lh) = axh + ELSEIF ( icdx > 1 ) THEN bx(lh) = 0.5 ax(lh) = 75.7149 - ELSE - bx(lh) = 0.37 ! 0.6 ! Ferrier 1994 + ELSEIF ( icdx == 0 ) THEN + bx(lh) = 0.37 ! 0.6 ! Ferrier 1994 graupel ax(lh) = 19.3 + ELSE ! icdx < 0 +! ax(lh) = 206.984 ! Ferrier 1994 hail/frozen drops +! bx(lh) = 0.6384 + bx(lh) = bxh + ax(lh) = axh ENDIF + ! bx(lh) = 0.6 IF ( lhl .gt. 1 ) THEN IF ( icdxhl == 6 ) THEN bx(lhl) = 0.593 ! Milbrandt and Morrison (2013) for density of 750. ax(lhl) = 179.36 + ELSEIF (icdxhl == 0 ) THEN + ax(lhl) = 206.984 ! Ferrier 1994 + bx(lhl) = 0.6384 ELSEIF (icdxhl > 0 ) THEN - bx(lhl) = 0.5 - ax(lhl) = 75.7149 + bx(lhl) = 0.5 + ax(lhl) = 75.7149 ELSE - ax(lhl) = 206.984 ! Ferrier 1994 - bx(lhl) = 0.6384 + bx(lhl) = bxhl + ax(lhl) = axhl ENDIF ENDIF @@ -1314,8 +1533,8 @@ SUBROUTINE nssl_2mom_init( & ! Uses incomplete gamma functions ! The terms with bxh or bxhl will be off if the actual bxh or bxhl is different from the base value (icdx=6 option) - bxh = bx(lh) - bxhl = bx(Max(lh,lhl)) + bxh1 = bx(lh) + bxhl1 = bx(Max(lh,lhl)) ! DO j = 0,nqiacralpha DO j = ialpstart,nqiacralpha @@ -1331,9 +1550,9 @@ SUBROUTINE nssl_2mom_init( & ! graupel (.,.,.,1) gamxinflu(i,j,1,1) = x/y gamxinflu(i,j,2,1) = gamxinfdp( 2.0+alp, ratio )/y - gamxinflu(i,j,3,1) = gamxinfdp( 2.5+alp+0.5*bxh, ratio )/y + gamxinflu(i,j,3,1) = gamxinfdp( 2.5+alp+0.5*bxh1, ratio )/y gamxinflu(i,j,5,1) = (gamma_dpr(5.0+alp) - gamxinfdp( 5.0+alp, ratio ))/y - gamxinflu(i,j,6,1) = (gamma_dpr(5.5+alp+0.5*bxh) - gamxinfdp( 5.5+alp+0.5*bxh, ratio ))/y + gamxinflu(i,j,6,1) = (gamma_dpr(5.5+alp+0.5*bxh1) - gamxinfdp( 5.5+alp+0.5*bxh1, ratio ))/y gamxinflu(i,j,9,1) = gamxinfdp( 1.0+alp, ratio )/y gamxinflu(i,j,10,1)= gamxinfdp( 4.0+alp, ratio )/y @@ -1342,9 +1561,9 @@ SUBROUTINE nssl_2mom_init( & ! hail (.,.,.,2) gamxinflu(i,j,1,2) = gamxinflu(i,j,1,1) gamxinflu(i,j,2,2) = gamxinflu(i,j,2,1) - gamxinflu(i,j,3,2) = gamxinfdp( 2.5+alp+0.5*bxhl, ratio )/y + gamxinflu(i,j,3,2) = gamxinfdp( 2.5+alp+0.5*bxhl1, ratio )/y gamxinflu(i,j,5,2) = gamxinflu(i,j,5,1) - gamxinflu(i,j,6,2) = (gamma_dpr(5.5+alp+0.5*bxhl) - gamxinfdp( 5.5+alp+0.5*bxhl, ratio ))/y + gamxinflu(i,j,6,2) = (gamma_dpr(5.5+alp+0.5*bxhl1) - gamxinfdp( 5.5+alp+0.5*bxhl1, ratio ))/y gamxinflu(i,j,9,2) = gamxinflu(i,j,9,1) gamxinflu(i,j,10,2)= gamxinflu(i,j,10,1) @@ -1352,16 +1571,16 @@ SUBROUTINE nssl_2mom_init( & ! gamxinflu(i,j,7,1) = gamxinfdp( alp - 1., ratio )/y gamxinflu(i,j,7,1) = (gamma_dpr(alp - 1.) - gamxinfdp( alp - 1., ratio ))/y ! gamxinflu(i,j,8,1) = gamxinfdp( alp - 0.5 + 0.5*bxh, ratio )/y - gamxinflu(i,j,8,1) = (gamma_dpr(alp - 0.5 + 0.5*bxh) - gamxinfdp( alp - 0.5 + 0.5*bxh, ratio ))/y -! gamxinflu(i,j,8,2) = gamxinfdp( alp - 0.5 + 0.5*bxhl, ratio )/y - gamxinflu(i,j,8,2) = (gamma_dpr(alp - 0.5 + 0.5*bxhl) - gamxinfdp( alp - 0.5 + 0.5*bxhl, ratio ))/y + gamxinflu(i,j,8,1) = (gamma_dpr(alp - 0.5 + 0.5*bxh1) - gamxinfdp( alp - 0.5 + 0.5*bxh1, ratio ))/y +! gamxinflu(i,j,8,2) = gamxinfdp( alp - 0.5 + 0.5*bxhl1, ratio )/y + gamxinflu(i,j,8,2) = (gamma_dpr(alp - 0.5 + 0.5*bxhl1) - gamxinfdp( alp - 0.5 + 0.5*bxhl1, ratio ))/y ELSE ! gamxinflu(i,j,7,1) = gamxinfdp( .1, ratio )/y gamxinflu(i,j,7,1) = (gamma_dpr(0.1) - gamxinfdp( 0.1, ratio ) )/y -! gamxinflu(i,j,8,1) = gamxinfdp( 1.1 - 0.5 + 0.5*bxh, ratio )/y -! gamxinflu(i,j,8,2) = gamxinfdp( 1.1 - 0.5 + 0.5*bxhl, ratio )/y - gamxinflu(i,j,8,1) = (gamma_dpr(1.1 - 0.5 + 0.5*bxh) - gamxinfdp( 1.1 - 0.5 + 0.5*bxh, ratio ) )/y - gamxinflu(i,j,8,2) = (gamma_dpr(1.1 - 0.5 + 0.5*bxhl) - gamxinfdp( 1.1 - 0.5 + 0.5*bxhl, ratio ) )/y +! gamxinflu(i,j,8,1) = gamxinfdp( 1.1 - 0.5 + 0.5*bxh1, ratio )/y +! gamxinflu(i,j,8,2) = gamxinfdp( 1.1 - 0.5 + 0.5*bxhl1, ratio )/y + gamxinflu(i,j,8,1) = (gamma_dpr(1.1 - 0.5 + 0.5*bxh1) - gamxinfdp( 1.1 - 0.5 + 0.5*bxh1, ratio ) )/y + gamxinflu(i,j,8,2) = (gamma_dpr(1.1 - 0.5 + 0.5*bxhl1) - gamxinfdp( 1.1 - 0.5 + 0.5*bxhl1, ratio ) )/y ENDIF gamxinflu(i,j,7,2) = gamxinflu(i,j,7,1) @@ -1395,9 +1614,8 @@ SUBROUTINE nssl_2mom_init( & qiacrratio(0,:) = 1.0 - isub = Min( 0, Max(-1,ihvol) ) ! is -1 or 0 - lccn = 0 + lccnuf = 0 lccna = 0 lnc = 0 lnr = 0 @@ -1419,34 +1637,41 @@ SUBROUTINE nssl_2mom_init( & ! lccn = 9 - ipconc = ipctmp IF ( ipconc == 0 ) THEN - IF ( ihvol >= 0 ) THEN + IF ( hail_on == 1 ) THEN ! turn on graupel density for 1-moment scheme lvh = 9 ltmp = 9 denscale(lvh) = 1 - ELSE ! no hail + ELSE ! no hail, 'LFO' scheme ltmp = lhab lhl = 0 ENDIF ELSEIF ( ipconc == 5 ) THEN - lccn = lhab+1 ! 9 - lnc = lhab+2 ! 10 - lnr = lhab+3 ! 11 - lni = lhab+4 !12 - lns = lhab+5 !13 - lnh = lhab+6 !14 + ltmp = lhab + IF ( iufccn > 0 ) THEN + ltmp = ltmp+1 + lccnuf = ltmp + denscale(lccnuf) = 1 + ENDIF + lccn= ltmp+1 ! 9 + lnc = ltmp+2 ! 10 + lnr = ltmp+3 ! 11 + lni = ltmp+4 !12 + lns = ltmp+5 !13 + lnh = ltmp+6 !14 ltmp = lnh - IF ( ihvol >= 0 ) THEN + IF ( hail_on == 1 ) THEN ltmp = ltmp + 1 lnhl = ltmp ! lhab+7 ! 15 ENDIF + IF ( density_on >= 1 ) THEN ltmp = ltmp + 1 lvh = ltmp ! lhab+8 + isub ! 16 + isub ! isub adjusts to 15 if hail is off ! ltmp = lvh - denscale(lccn:lvh) = 1 - IF ( ihvol >= 1 ) THEN + ENDIF + denscale(lccn:ltmp) = 1 + IF ( density_on == 1 .and. hail_on == 1 ) THEN ltmp = ltmp + 1 lvhl = ltmp ! ltmp = lvhl @@ -1464,24 +1689,31 @@ SUBROUTINE nssl_2mom_init( & ! ltmp = lhlw ENDIF ELSEIF ( ipconc >= 6 ) THEN - write(0,*) 'NSSL microphysics has not been compiled for 3-moment. Sorry.' - STOP - lccn = lhab+1 ! 9 - lnc = lhab+2 ! 10 - lnr = lhab+3 ! 11 - lni = lhab+4 !12 - lns = lhab+5 !13 - lnh = lhab+6 !14 + ltmp = lhab + IF ( iufccn > 0 ) THEN + ltmp = ltmp+1 + lccnuf = ltmp + denscale(lccnuf) = 1 + ENDIF + + lccn= ltmp+1 ! 9 + lnc = ltmp+2 ! 10 + lnr = ltmp+3 ! 11 + lni = ltmp+4 !12 + lns = ltmp+5 !13 + lnh = ltmp+6 !14 ltmp = lnh IF ( lhl > 0 ) THEN ltmp = ltmp + 1 lnhl = ltmp ! lhab+7 ! 15 ENDIF + IF ( density_on == 1 ) THEN ltmp = ltmp + 1 lvh = ltmp ! lhab+8 + isub ! 16 + isub ! isub adjusts to 15 if hail is off + ENDIF ! ltmp = lvh - denscale(lccn:lvh) = 1 - IF ( ihvol >= 1 ) THEN + denscale(lccn:ltmp) = 1 + IF ( density_on == 1 .and. hail_on == 1 ) THEN ltmp = ltmp + 1 lvhl = ltmp ! ltmp = lvhl @@ -1501,19 +1733,14 @@ SUBROUTINE nssl_2mom_init( & lzh = ltmp ltmp = ltmp + 1 lzr = ltmp - ltmp = ltmp + 1 IF ( lhl > 1 ) THEN ltmp = ltmp + 1 lzhl = ltmp ENDIF + ! write(0,*) 'ipcon,lzr = ',ipconc,lzr,lzh,lzhl ENDIF ! ltmp = lvh ! denscale(lccn:lvh) = 1 - IF ( ihvol >= 1 ) THEN - lvhl = ltmp+1 - ltmp = lvhl - denscale(lvhl) = 1 - ENDIF IF ( mixedphase ) THEN ltmp = ltmp + 1 lsw = ltmp @@ -1531,7 +1758,8 @@ SUBROUTINE nssl_2mom_init( & - + ! write(0,*) 'wrf_init: lh,lhl,lzh,lzhl = ',lh,lhl,lzh,lzhl + ! write(0,*) 'wrf_init: ipconc = ',ipconc ! write(0,*) 'wrf_init: irenuc, turn_on_ccna = ',irenuc, turn_on_ccna IF ( turn_on_ccna ) THEN ltmp = ltmp + 1 @@ -1763,9 +1991,16 @@ SUBROUTINE nssl_2mom_init( & IF ( lhl .gt. 1 ) ido(lhl) = idohl IF ( irfall .lt. 0 ) irfall = infall + IF ( isfall .lt. 0 ) isfall = infall IF ( lzr > 0 ) irfall = 0 qccn = ccn/rho00 + qccnuf = ccnuf/rho00 + IF ( old_cccn > 0.0 ) THEN + old_qccn = old_cccn/rho00 + ELSE + old_qccn = qccn + ENDIF ! xvcmx = (4./3.)*pi*xcradmx**3 ! set max rain diameter @@ -1914,6 +2149,33 @@ SUBROUTINE nssl_2mom_init( & ENDDO ENDDO + dab0lu(:,:,:,:) = 0.0 + dab1lu(:,:,:,:) = 0.0 + + IF ( ipconc >= 6 ) THEN + DO il = lc,lhab ! collector + DO j = lc,lhab ! collected + IF ( il .ne. j ) THEN + + DO jj = ialpstart,nqiacralpha + alpjj = float(jj)*dqiacralpha + xnujj = (alpjj - 2.)/3. + DO ii = ialpstart,nqiacralpha + alpii = float(ii)*dqiacralpha + xnuii = (alpii - 2.)/3. + + dab0lu(ii,jj,il,j) = delabk(bb(il), bb(j), xnuii, xnujj, xmu(il), xmu(j), 0) + dab1lu(ii,jj,il,j) = delabk(bb(il), bb(j), xnuii, xnujj, xmu(il), xmu(j), 1) + + ENDDO + ENDDO +! write(0,*) 'il, j, dab0, dab1 = ',il, j, dab0(il,j), dab1(il,j) + ENDIF + ENDDO + ENDDO + + ENDIF + gf4br = gamma_sp(4.0+br) gf4ds = gamma_sp(4.0+ds) gf4p5 = gamma_sp(4.0+0.5) @@ -1960,24 +2222,31 @@ END SUBROUTINE nssl_2mom_init ! ##################################################################### SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw, chl, & - cn, vhw, vhl, cna, cni, f_cn, f_cna, f_cina, & - zrw, zhw, zhl, & + cn, vhw, vhl, cna, cni, f_cn, f_cna, f_cina, & + f_qc, f_qr, f_qi, f_qs, f_qh, f_qhl, & + cnuf, f_cnuf, & + zrw, zhw, zhl, f_zrw, f_zhw, f_zhl, f_vhw, f_vhl, & qsw, qhw, qhlw, & tt, th, pii, p, w, dn, dz, dtp, itimestep, & + is_theta_or_temp, & + ntmul, ntcnt, lastloop, & RAINNC,RAINNCV, & dx, dy, & axtra, & SNOWNC, SNOWNCV, GRPLNC, GRPLNCV, & SR,HAILNC, HAILNCV, & + hail_maxk1, hail_max2d, nwp_diagnostics, & tkediss, & - re_cloud, re_ice, re_snow, & - has_reqc, has_reqi, has_reqs, & + re_cloud, re_ice, re_snow, re_rain, & + re_graup, re_hail, & + has_reqc, has_reqi, has_reqs, has_reqr, & + has_reqg, has_reqh, & rainncw2, rainnci2, & dbz, vzf,compdbz, & rscghis_2d,rscghis_2dp,rscghis_2dn, & scr,scw,sci,scs,sch,schl,sctot, & elec_physics, & - induc,elec,scion,sciona, & + induc,elecz,scion,sciona, & noninduc,noninducp,noninducn, & pcc2, pre2, depsubr, & mnucf2, melr2, ctr2, & @@ -2004,6 +2273,8 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw + + implicit none @@ -2021,7 +2292,9 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw zrw, zhw, zhl, & qsw, qhw, qhlw, & qi,qhl,ccw,crw,cci,csw,chw,chl,vhw,vhl - real, dimension(ims:ime, kms:kme, jms:jme), optional, intent(inout):: dbz, vzf, cn, cna, cni + integer, optional, intent(in) :: is_theta_or_temp + logical, optional, intent(in) :: f_zrw, f_zhw, f_zhl, f_vhw, f_vhl ! not used yet + real, dimension(ims:ime, kms:kme, jms:jme), optional, intent(inout):: dbz, vzf, cn, cna, cni, cnuf real, dimension(ims:ime, jms:jme), optional, intent(inout):: compdbz real, dimension(ims:ime, jms:jme), optional, intent(inout):: rscghis_2d, & ! 2D accumulation arrays for vertically-integrated charging rate rscghis_2dp, & ! 2D accumulation arrays for vertically-integrated charging rate (positive only) @@ -2032,8 +2305,8 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw scr,scw,sci,scs,sch,schl,sciona,sctot ! space charge real, dimension(ims:ime, kms:kme, jms:jme), optional, intent(inout):: & induc,noninduc,noninducp,noninducn ! charging rates: inductive, noninductive (all, positive, negative to graupel) - real, dimension(ims:ime, kms:kme, jms:jme), optional, intent(in) :: elec ! elecsave = Ez - real, dimension(ims:ime, kms:kme, jms:jme,2),optional, intent(inout) :: scion + real, dimension(ims:ime, kms:kme, jms:jme), optional, intent(in) :: elecz ! elecsave = Ez + real, dimension(ims:ime, kms:kme, jms:jme,2),optional, intent(inout) :: scion real, dimension(ims:ime, kms:kme, jms:jme), intent(in):: p,w,dz,dn real, dimension(ims:ime, kms:kme, jms:jme), intent(in):: pii @@ -2054,29 +2327,44 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw real, dimension(ims:ime, kms:kme, jms:jme), optional, intent(inout) :: axtra ! WRF variables - real, dimension(ims:ime, jms:jme), intent(inout):: & + real, dimension(ims:ime, jms:jme) :: & RAINNC,RAINNCV ! accumulated precip (NC) and rate (NCV) real, dimension(ims:ime, jms:jme), optional, intent(inout):: & SNOWNC,SNOWNCV,GRPLNC,GRPLNCV,SR ! accumulated precip (NC) and rate (NCV) real, dimension(ims:ime, jms:jme), optional, intent(inout):: & HAILNC,HAILNCV ! accumulated precip (NC) and rate (NCV) - REAL, DIMENSION(ims:ime, kms:kme, jms:jme), optional, INTENT(INOUT):: re_cloud, re_ice, re_snow + real, dimension(ims:ime, jms:jme), optional, intent(inout) :: hail_maxk1, hail_max2d + integer, optional, intent(in) :: nwp_diagnostics +! for cm1, set nproctot=44 (or as needed) to get domain total rates + integer, parameter :: nproc = 1 + double precision :: proctot(nproc),proctotmpi(nproc) + REAL, DIMENSION(ims:ime, kms:kme, jms:jme), optional, INTENT(INOUT):: re_cloud, re_ice, re_snow, & + re_rain, re_graup, re_hail REAL, DIMENSION(ims:ime, kms:kme, jms:jme), optional, INTENT(IN):: tkediss - INTEGER, INTENT(IN), optional :: has_reqc, has_reqi, has_reqs + INTEGER, INTENT(IN), optional :: has_reqc, has_reqi, has_reqs, has_reqr, has_reqg, has_reqh real, dimension(ims:ime, jms:jme), intent(out), optional :: & rainncw2, rainnci2 ! liquid rain, ice, accumulation rates real, optional, intent(in) :: dx,dy real, intent(in):: dtp integer, intent(in):: itimestep !, ccntype - logical, optional, intent(in) :: diagflag, f_cna, f_cn, f_cina + integer, intent(in), optional :: ntmul, ntcnt + logical, optional, intent(in) :: lastloop + logical, optional, intent(in) :: diagflag, f_cna, f_cn, f_cina, f_cnuf + logical, optional, intent(in) :: f_qc, f_qr, f_qi, f_qs, f_qh, f_qhl integer, optional, intent(in) :: ipelectmp, ke_diag + LOGICAL, INTENT(IN), OPTIONAL :: nssl_progn ! flags for wrf-chem ! REAL, DIMENSION(ims:ime, kms:kme, jms:jme), optional,INTENT(INOUT):: qndrop LOGICAL :: flag_qndrop ! wrf-chem LOGICAL :: flag_qnifa , flag_qnwfa + logical :: flag_cnuf = .false. + logical :: flag_ccn = .false. + logical :: flag_qi = .true. + logical :: has_reqr_local = .false., has_reqg_local = .false., has_reqh_local = .false. logical :: flag + logical :: nwp_diagflag = .false. real :: cinchange, t7max,testmax,wmax ! 20130903 acd_ck_washout start @@ -2101,11 +2389,14 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw real, dimension(its:ite, kts:kte) :: rainprod2d, evapprod2d,tke2d real, dimension(its:ite, 1, kts:kte, na) :: an, ancuten real, dimension(its:ite, 1, kts:kte, nxtra) :: axtra2d + real, dimension(its:ite, 1, kts:kte, 3) :: alpha2d real, dimension(its:ite, 1, kts:kte) :: t0,t1,t2,t3,t4,t5,t6,t7,t8,t9 real, dimension(its:ite, 1, kts:kte) :: dn1,t00,t77,ssat,pn,wn,dz2d,dz2dinv,dbz2d,vzf2d real, dimension(its:ite, 1, na) :: xfall + real, dimension(its:ite, 1) :: hailmax1d,hailmaxk1 + real, dimension(kts:kte, nproc) :: thproclocal integer, parameter :: nor = 0, ng = 0 - integer :: nx,ny,nz + integer :: nx,ny,nz,ngs integer ix,jy,kz,i,j,k,il,n integer :: infdo real :: ssival, ssifac, t8s, t9s, qvapor @@ -2116,6 +2407,7 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw real :: dbzmx,refl integer :: vzflag0 = 0 logical :: makediag + real :: dx1,dy1 real, parameter :: cnin20 = 1.0e3 real, parameter :: cnin10 = 5.0e1 real, parameter :: cnin1a = 4.5 @@ -2129,7 +2421,7 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw double precision :: grmass1,grmass2 double precision :: hlmass1,hlmass2 double precision :: wvol5,wvol10 - real :: tmp,dv,dv1 + real :: tmp,dv,dv1,tmpchg real :: rdt double precision :: dt1,dt2 @@ -2144,15 +2436,11 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw real :: ycent, y, emissrate, emissrate0, emissrate1, z, fac, factot real :: fach(kts:kte) - -#ifdef MPI - -#if defined(MPI) - integer, parameter :: ntot = 50 - double precision mpitotindp(ntot), mpitotoutdp(ntot) - INTEGER :: mpi_error_code = 1 -#endif -#endif + + logical, parameter :: debugdriver = .false. + + integer :: loopcnt, loopmax, outerloopcnt + logical :: lastlooptmp ! ------------------------------------------------------------------- @@ -2160,18 +2448,58 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw rdt = 1.0/dtp -! write(0,*) 'N2M: entering routine' + IF ( debugdriver ) write(0,*) 'N2M: entering routine' flag_qndrop = .false. flag_qnifa = .false. flag_qnwfa = .false. + flag_cnuf = .false. + flag_ccn = .false. + nwp_diagflag = .false. IF ( PRESENT ( nssl_progn ) ) flag_qndrop = nssl_progn + IF ( present ( f_cnuf ) ) flag_cnuf = f_cnuf + IF ( present ( nwp_diagnostics ) ) nwp_diagflag = ( nwp_diagnostics > 0 ) + IF ( present ( f_cn ) .and. present( cn ) ) THEN + flag_ccn = f_cn + ELSEIF ( present( cn ) ) THEN + flag_ccn = .true. + ENDIF + + IF ( present( f_qi ) ) THEN + flag_qi = f_qi + ELSE + IF ( ffrzs < 1.0 ) THEN + flag_qi = .true. + ELSE + flag_qi = .false. + ENDIF + ENDIF + IF ( .not. flag_qi .and. ffrzs < 1.0 ) ffrzs = 1.0 + + IF ( PRESENT ( has_reqr ) ) has_reqr_local = has_reqr > 0 + IF ( PRESENT ( has_reqg ) ) has_reqg_local = has_reqg > 0 + IF ( PRESENT ( has_reqh ) ) has_reqh_local = has_reqh > 0 - ! --- + loopmax = 1 + outerloopcnt = 1 + lastlooptmp = .true. + IF ( present( ntmul ) .and. present( ntcnt ) .and. present( lastloop ) ) THEN + loopmax = ntmul + outerloopcnt = ntcnt + lastlooptmp = lastloop + ENDIF + + + has_wetscav = .false. + IF ( wrfchem_flag > 0 ) THEN + IF ( PRESENT( wetscav_on ) ) THEN + has_wetscav = wetscav_on + ENDIF + ENDIF IF ( present( f_cna ) ) THEN f_cnatmp = f_cna @@ -2202,25 +2530,35 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw ! ENDDO ! ENDIF + IF ( present( dx ) .and. present( dy ) ) THEN + dx1 = dx + dy1 = dy + ELSE + dx1 = 1.0 + dy1 = 1.0 + ENDIF + makediag = .true. IF ( present( diagflag ) ) THEN makediag = diagflag .or. itimestep == 1 ENDIF -! write(0,*) 'N2M: makediag = ',makediag + IF ( debugdriver ) write(0,*) 'N2M: makediag = ',makediag nx = ite-its+1 ny = 1 ! set up as 2D slabs nz = kte-kts+1 + ngs = 64 - IF ( .not. present( cn ) ) THEN + IF ( .not. flag_ccn ) THEN renucfrac = 1.0 ENDIF + ! set up CCN array and some other static local values - IF ( itimestep == 1 .and. .not. invertccn .and. present( cn ) ) THEN + IF ( itimestep == 1 .and. .not. invertccn .and. flag_ccn ) THEN ! this is not needed for WRF 3.8 and later because it is done in physics_init, ! but kept for backwards compatibility with earlier versions IF ( lccna > 1 .and. .not. ( present( cna ) .and. f_cnatmp ) ) THEN @@ -2242,9 +2580,21 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw ENDDO ENDDO ENDIF + + IF ( lccnuf > 1 .and. flag_cnuf .and. ccnuf > 1.0 ) THEN +! write(0,*) 'set cnuf1' + DO jy = jts,jte + DO kz = kts,kte + DO ix = its,ite + cnuf(ix,kz,jy) = qccnuf + ENDDO + ENDDO + ENDDO + ENDIF + ENDIF - IF ( itimestep == 1 .and. invertccn .and. present( cn ) ) THEN + IF ( itimestep == 1 .and. invertccn .and. flag_ccn ) THEN ! this is not needed for WRF 3.8 and later because it is done in physics_init, ! but kept for backwards compatibility with earlier versions DO jy = jts,jte @@ -2256,7 +2606,7 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw ENDDO ENDIF - IF ( invertccn .and. present( cn ) ) THEN ! hack for WRF to convert activated ccn to unactivated, then do not have to + IF ( invertccn .and. flag_ccn ) THEN ! hack for WRF to convert activated ccn to unactivated, then do not have to ! worry about initial and boundary conditions - they are zero DO jy = jts,jte DO kz = kts,kte @@ -2265,7 +2615,20 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw ENDDO ENDDO ENDDO + + IF ( lccnuf > 1 .and. flag_cnuf .and. ccnuf > 1.0 ) THEN +! write(0,*) 'set cnuf (invertccn)' + DO jy = jts,jte + DO kz = kts,kte + DO ix = its,ite + cnuf(ix,kz,jy) = qccnuf - cnuf(ix,kz,jy) + ENDDO + ENDDO + ENDDO ENDIF + + ENDIF + ! ENDIF ! itimestep == 1 @@ -2316,32 +2679,36 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw -! write(0,*) 'N2M: jy loop 1, lhl,na = ',lhl,na,present(qhl) + IF ( debugdriver ) write(0,*) 'N2M: jy loop 1, lhl,na = ',lhl,na,present(qhl) ancuten(its:ite,1,kts:kte,:) = 0.0 + thproclocal(:,:) = 0.0 + DO jy = jts,jye - xfall(:,:,:) = 0.0 - ! write(0,*) 'N2M: load an, jy,lccn = ',jy,lccn,qccn IF ( present( pcc2 ) .and. makediag ) THEN axtra2d(its:ite,1,kts:kte,:) = 0.0 ENDIF + IF ( nwp_diagflag ) THEN + alpha2d(its:ite,1,kts:kte,1) = alphar + alpha2d(its:ite,1,kts:kte,2) = alphah + alpha2d(its:ite,1,kts:kte,3) = alphahl + ENDIF + + ! copy from 3D array to 2D slab DO kz = kts,kte DO ix = its,ite - an(ix,1,kz,lt) = th(ix,kz,jy) - - an(ix,1,kz,lv) = qv(ix,kz,jy) an(ix,1,kz,lc) = qc(ix,kz,jy) an(ix,1,kz,lr) = qr(ix,kz,jy) - IF ( present( qi ) ) THEN + IF ( flag_qi ) THEN an(ix,1,kz,li) = qi(ix,kz,jy) ELSE an(ix,1,kz,li) = 0.0 @@ -2352,13 +2719,16 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw IF ( lccn > 1 ) THEN IF ( is_aerosol_aware .and. flag_qnwfa ) THEN ! - ELSEIF ( present( cn ) ) THEN + ELSEIF ( flag_ccn ) THEN IF ( lccna > 1 .and. .not. ( present( cna ) .and. f_cnatmp ) ) THEN an(ix,1,kz,lccna) = cn(ix,kz,jy) an(ix,1,kz,lccn) = qccn ! cn(ix,kz,jy) ELSE an(ix,1,kz,lccn) = cn(ix,kz,jy) ENDIF + IF ( i_uf_or_ccn > 0 .and. lccnuf > 1 ) THEN ! UF ccn are extra regular ccn + an(ix,1,kz,lccn) = an(ix,1,kz,lccn) + cnuf(ix,kz,jy) + ENDIF ELSE IF ( lccna == 0 .and. ( .not. f_cnatmp ) ) THEN an(ix,1,kz,lccn) = qccn - ccw(ix,kz,jy) @@ -2369,6 +2739,14 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw ENDIF ENDIF + IF ( lccnuf > 0 .and. flag_cnuf ) THEN + IF ( i_uf_or_ccn == 0 ) THEN ! UF are UF + an(ix,1,kz,lccnuf) = Max(0.0, cnuf(ix,kz,jy) ) + ELSE ! UF were added to lccn + an(ix,1,kz,lccnuf) = 0.0 + ENDIF + ENDIF + IF ( lccna > 1 ) THEN IF ( present( cna ) .and. f_cnatmp ) THEN an(ix,1,kz,lccna) = cna(ix,kz,jy) @@ -2399,12 +2777,42 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw IF ( lvh > 0 ) an(ix,1,kz,lvh) = vhw(ix,kz,jy) IF ( lvhl > 0 .and. present( vhl ) ) an(ix,1,kz,lvhl) = vhl(ix,kz,jy) + IF ( ipconc >= 6 ) THEN + IF ( lzr > 0 ) an(ix,1,kz,lzr) = zrw(ix,kz,jy)*zscale + IF ( lzh > 0 ) an(ix,1,kz,lzh) = zhw(ix,kz,jy)*zscale + IF ( lzhl > 0 ) an(ix,1,kz,lzhl) = zhl(ix,kz,jy)*zscale + ENDIF + ENDDO + ENDDO + + DO kz = kts,kte + DO ix = its,ite t0(ix,1,kz) = th(ix,kz,jy)*pii(ix,kz,jy) ! temperature (Kelvin) + t00(ix,1,kz) = 380.0/p(ix,kz,jy) + t77(ix,1,kz) = pii(ix,kz,jy) + dbz2d(ix,1,kz) = 0.0 + vzf2d(ix,1,kz) = 0.0 + ENDDO + ENDDO + + DO ix = its,ite + RAINNCV(ix,jy) = 0.0 + IF ( present( GRPLNCV ) ) GRPLNCV(ix,jy) = 0.0 + IF ( present( HAILNCV ) ) HAILNCV(ix,jy) = 0.0 + IF ( present( SNOWNCV ) ) SNOWNCV(ix,jy) = 0.0 + ENDDO + + DO loopcnt = 1,loopmax + + DO kz = kts,kte + DO ix = its,ite + + t1(ix,1,kz) = 0.0 t2(ix,1,kz) = 0.0 t3(ix,1,kz) = 0.0 @@ -2414,14 +2822,10 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw t7(ix,1,kz) = 0.0 t8(ix,1,kz) = 0.0 t9(ix,1,kz) = 0.0 - t00(ix,1,kz) = 380.0/p(ix,kz,jy) - t77(ix,1,kz) = pii(ix,kz,jy) - dbz2d(ix,1,kz) = 0.0 - vzf2d(ix,1,kz) = 0.0 - dn1(ix,1,kz) = dn(ix,kz,jy) pn(ix,1,kz) = p(ix,kz,jy) wn(ix,1,kz) = w(ix,kz,jy) + dn1(ix,1,kz) = dn(ix,kz,jy) ! wmax = Max(wmax,wn(ix,1,kz)) dz2d(ix,1,kz) = dz(ix,kz,jy) dz2dinv(ix,1,kz) = 1./dz(ix,kz,jy) @@ -2439,6 +2843,7 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw ! ssival = Min(t8s,max(an(ix,1,kz,lv),0.0))/t9s ! qv/qvi + if ( ssival .gt. 1.0 ) then ! IF ( icenucopt == 1 ) THEN @@ -2491,19 +2896,20 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw ELSEIF ( icenucopt == 4 ) THEN ! DeMott 2010 - IF ( t0(ix,jy,kz) < 268.16 .and. t0(ix,jy,kz) > 223.15 .and. ssival > 1.001 ) THEN ! + IF ( t0(ix,1,kz) < 268.16 .and. t0(ix,1,kz) > 223.15 .and. ssival > 1.001 ) THEN ! ! a = 0.0000594, b = 3.33, c = 0.0264, d = 0.0033, ! nint = a*(-Tc)**b * naer**(c*(-Tc) + d) ! nint has units of per (standard) liter, so mult by 1.e3 and scale by dn/rho00 ! naer needs units of cm**-3, so mult by 1.e-6 - ! dp1 = 1.e3*0.0000594*(273.16 - t0(ix,jy,kz))**3.33 * (1.e-6*cin*dn(ix,jy,kz))**(0.0264*(273.16 - t0(ix,jy,kz)) + 0.0033) - dp1 = 1.e3*dn(ix,jy,kz)/rho00*0.0000594*(273.16 - t0(ix,jy,kz))**3.33 * (1.e-6*naer)**(0.0264*(273.16 - t0(ix,jy,kz)) + 0.0033) - t7(ix,jy,kz) = Min(dp1, 1.0d30) + ! dp1 = 1.e3*0.0000594*(273.16 - t0(ix,1,kz))**3.33 * (1.e-6*cin*dn(ix,1,kz))**(0.0264*(273.16 - t0(ix,1,kz)) + 0.0033) + tmp = 1.e-6*naer + dp1 = 1.e3*dn1(ix,1,kz)/rho00*0.0000594*(273.16 - t0(ix,1,kz))**3.33 * tmp**(0.0264*(273.16 - t0(ix,1,kz)) + 0.0033) + t7(ix,1,kz) = Min(dp1, 1.0d30) ELSE - t7(ix,jy,kz) = 0.0 + ! t7(ix,1,kz) = 0.0 ENDIF ENDIF ! icenucopt @@ -2516,48 +2922,48 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw ENDDO ! ix ENDDO ! kz - has_wetscav = .false. - IF ( wrfchem_flag > 0 ) THEN - IF ( PRESENT( wetscav_on ) ) THEN - has_wetscav = wetscav_on - IF ( has_wetscav ) THEN - IF ( PRESENT( rainprod ) ) rainprod2d(its:ite,kts:kte) = 0 - IF ( PRESENT( evapprod ) ) evapprod2d(its:ite,kts:kte) = 0 - ENDIF - ENDIF - ENDIF + IF ( wrfchem_flag > 0 ) THEN + IF ( has_wetscav ) THEN + IF ( PRESENT( rainprod ) ) rainprod2d(its:ite,kts:kte) = 0 + IF ( PRESENT( evapprod ) ) evapprod2d(its:ite,kts:kte) = 0 + ENDIF + ENDIF ! transform from number mixing ratios to number conc. + IF ( loopcnt == 1 ) THEN DO il = lnb,na IF ( denscale(il) == 1 ) THEN DO kz = kts,kte DO ix = its,ite - an(ix,1,kz,il) = an(ix,1,kz,il)*dn(ix,kz,jy) + an(ix,1,kz,il) = an(ix,1,kz,il)*dn1(ix,1,kz) ! dn(ix,kz,jy) ENDDO ENDDO ENDIF ENDDO ! il + ENDIF + ! sedimentation xfall(:,:,:) = 0.0 - IF ( .true. ) THEN + +! IF ( .true. ) THEN ! #ifndef CM1 ! for real cases when hydrometeor mixing ratios have been initialized without concentrations - IF ( itimestep == 1 .and. ipconc > 0 ) THEN + IF ( itimestep == 1 .and. ipconc > 0 .and. loopcnt == 1 ) THEN call calcnfromq(nx,ny,nz,an,na,nor,nor,dn1) ENDIF ! #endif IF ( present(cu_used) .and. & ( present( qrcuten ) .or. present( qscuten ) .or. & - present( qicuten ) .or. present( qccuten ) ) ) THEN + present( qicuten ) .or. present( qccuten ) ) ) THEN !{ - IF ( cu_used == 1 ) THEN + IF ( cu_used == 1 ) THEN !{ DO kz = kts,kte DO ix = its,ite @@ -2571,10 +2977,22 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw call calcnfromcuten(nx,ny,nz,ancuten,an,na,nor,nor,dn1) - - ENDIF - - ENDIF + DO kz = kts,kte + DO ix = its,ite + + + IF ( ipconc >= 6 ) THEN +! IF ( lzr > 0 ) an(ix,1,kz,lzr) = an(ix,1,kz,lzr) + ancuten(ix,1,kz,lzr) + ENDIF + + ENDDO + ENDDO + + ENDIF !} + + ENDIF !} + + call sediment1d(dtp,nx,ny,nz,an,na,nor,nor,xfall,dn1,dz2d,dz2dinv, & @@ -2584,14 +3002,16 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw ! copy xfall to appropriate places... -! write(0,*) 'N2M: end sediment, jy = ',jy + IF ( debugdriver ) write(0,*) 'N2M: end sediment, jy = ',jy DO ix = its,ite IF ( lhl > 1 ) THEN - RAINNCV(ix,jy) = dtp*dn1(ix,1,1)*(xfall(ix,1,lr) + xfall(ix,1,ls)*1000./xdn0(lr) + & + RAINNCV(ix,jy) = RAINNCV(ix,jy) + & + dtp*dn1(ix,1,1)*(xfall(ix,1,lr) + xfall(ix,1,ls)*1000./xdn0(lr) + & & xfall(ix,1,lh)*1000./xdn0(lr) + xfall(ix,1,lhl)*1000./xdn0(lr) ) ELSE - RAINNCV(ix,jy) = dtp*dn1(ix,1,1)*(xfall(ix,1,lr) + xfall(ix,1,ls)*1000./xdn0(lr) + & + RAINNCV(ix,jy) = RAINNCV(ix,jy) + & + dtp*dn1(ix,1,1)*(xfall(ix,1,lr) + xfall(ix,1,ls)*1000./xdn0(lr) + & & xfall(ix,1,lh)*1000./xdn0(lr) ) ENDIF IF ( present ( rainncw2 ) ) THEN ! rain only @@ -2606,11 +3026,19 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw & xfall(ix,1,lh)*1000./xdn0(lr) ) ENDIF ENDIF - IF ( present( SNOWNCV ) ) SNOWNCV(ix,jy) = dtp*dn1(ix,1,1)*xfall(ix,1,ls)*1000./xdn0(lr) - IF ( present( GRPLNCV ) ) GRPLNCV(ix,jy) = dtp*dn1(ix,1,1)*xfall(ix,1,lh)*1000./xdn0(lr) - RAINNC(ix,jy) = RAINNC(ix,jy) + RAINNCV(ix,jy) + IF ( present( SNOWNCV ) ) SNOWNCV(ix,jy) = SNOWNCV(ix,jy) + dtp*dn1(ix,1,1)*xfall(ix,1,ls)*1000./xdn0(lr) + IF ( present( GRPLNCV ) ) THEN + IF ( lhl > 1 .and. .not. present( HAILNC) ) THEN ! if no separate hail accum, then add to graupel + GRPLNCV(ix,jy) = GRPLNCV(ix,jy) + dtp*dn1(ix,1,1)*(xfall(ix,1,lh) + xfall(ix,1,lhl)) *1000./xdn0(lr) + ELSE + GRPLNCV(ix,jy) = GRPLNCV(ix,jy) + dtp*dn1(ix,1,1)*xfall(ix,1,lh)*1000./xdn0(lr) + ENDIF + ENDIF + IF ( loopcnt == loopmax ) RAINNC(ix,jy) = RAINNC(ix,jy) + RAINNCV(ix,jy) - IF ( present (SNOWNC) .and. present (SNOWNCV) ) SNOWNC(ix,jy) = SNOWNC(ix,jy) + SNOWNCV(ix,jy) + IF ( present (SNOWNC) .and. present (SNOWNCV) .and. loopcnt == loopmax ) THEN + SNOWNC(ix,jy) = SNOWNC(ix,jy) + SNOWNCV(ix,jy) + ENDIF IF ( lhl > 1 ) THEN !#ifdef CM1 ! IF ( .true. ) THEN @@ -2618,13 +3046,15 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw IF ( present( HAILNC ) ) THEN !#endif HAILNCV(ix,jy) = dtp*dn1(ix,1,1)*xfall(ix,1,lhl)*1000./xdn0(lr) - HAILNC(ix,jy) = HAILNC(ix,jy) + HAILNCV(ix,jy) - ELSEIF ( present( GRPLNCV ) ) THEN - GRPLNCV(ix,jy) = dtp*dn1(ix,1,1)*xfall(ix,1,lhl)*1000./xdn0(lr) + IF ( loopcnt == loopmax ) HAILNC(ix,jy) = HAILNC(ix,jy) + HAILNCV(ix,jy) +! ELSEIF ( present( GRPLNCV ) ) THEN ! if no separate hail accum, then add to graupel +! GRPLNCV(ix,jy) = GRPLNCV(ix,jy) + dtp*dn1(ix,1,1)*xfall(ix,1,lhl)*1000./xdn0(lr) ENDIF ENDIF - IF ( present( GRPLNCV ) ) GRPLNC(ix,jy) = GRPLNC(ix,jy) + GRPLNCV(ix,jy) - IF ( present( SR ) .and. present (SNOWNCV) .and. present(GRPLNCV) ) THEN + IF ( present( GRPLNCV ) .and. loopcnt == loopmax ) THEN + GRPLNC(ix,jy) = GRPLNC(ix,jy) + GRPLNCV(ix,jy) + ENDIF + IF ( present( SR ) .and. present (SNOWNCV) .and. present(GRPLNCV) .and. loopcnt == loopmax ) THEN IF ( present( HAILNC ) ) THEN SR(ix,jy) = (SNOWNCV(ix,jy)+HAILNCV(ix,jy)+GRPLNCV(ix,jy))/(RAINNCV(ix,jy)+1.e-12) ELSE @@ -2633,12 +3063,12 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw ENDIF ENDDO - ENDIF ! .false. +! ENDIF ! .false. IF ( isedonly /= 1 ) THEN ! call nssl_2mom_gs: main gather-scatter routine to calculate microphysics -! write(0,*) 'N2M: gs, jy = ',jy + IF ( debugdriver ) write(0,*) 'N2M: gs, jy = ',jy ! IF ( isedonly /= 2 ) THEN @@ -2655,8 +3085,9 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw ! & ln,ipc,lvol,lz,lliq, & & cdx, & & xdn0,dbz2d,tke2d, & + & thproclocal,nproc,dx1,dy1,ngs, & & timevtcalc,axtra2d, makediag & - & ,has_wetscav, rainprod2d, evapprod2d & + & ,has_wetscav, rainprod2d, evapprod2d, alpha2d & & ,elec2,its,ids,ide,jds,jde & & ) @@ -2674,28 +3105,32 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw & ,dz2d & & ,t0,t9 & & ,an,dn1,t77 & - & ,pn,wn & + & ,pn,wn & + & ,ngs & & ,axtra2d, makediag & & ,ssat,t00,t77,flag_qndrop) + ENDIF + + + ENDDO ! loopcnt=1,loopmax IF ( present( pcc2 ) .and. makediag ) THEN DO kz = kts,kte DO ix = its,ite ! example of using the 'axtra2d' array to get rates out of the microphysics routine for output. ! Search for 'axtra' to find example code below ! pcc2(ix,kz,jy) = axtra2d(ix,1,kz,1) - ENDDO ENDDO ENDIF ! compute diagnostic S-band reflectivity if needed - IF ( present( dbz ) .and. makediag ) THEN + IF ( present( dbz ) .and. makediag .and. lastlooptmp ) THEN ! calc dbz IF ( .true. ) THEN @@ -2733,7 +3168,8 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw ! Following Greg Thompson, calculation for effective radii. Used by RRTMG LW/SW schemes if enabled in module_physics_init.F IF ( present( has_reqc ).and. present( has_reqi ) .and. present( has_reqs ) .and. & - present( re_cloud ).and. present( re_ice ) .and. present( re_snow ) ) THEN + present( re_cloud ).and. present( re_ice ) .and. present( re_snow ) .and. & + lastlooptmp) THEN IF ( has_reqc.ne.0 .or. has_reqi.ne.0 .or. has_reqs.ne.0) THEN DO kz = kts,kte DO ix = its,ite @@ -2743,14 +3179,17 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw t1(ix,1,kz) = 2.51E-6 t2(ix,1,kz) = 10.01E-6 t3(ix,1,kz) = 25.E-6 + t4(ix,1,kz) = 50.e-6 ENDDO ENDDO + call calc_eff_radius & & (nx,ny,nz,na,jy & & ,nor,nor & - & ,t1,t2,t3 & - & ,an,dn1 ) + & ,t1=t1,t2=t2,t3=t3,t4=t4,t5=t5,t6=t6 & + & ,f_t4=has_reqr_local,f_t5=has_reqg_local, f_t6=has_reqh_local & + & ,an=an,dn=dn1 ) DO kz = kts,kte DO ix = its,ite @@ -2761,19 +3200,63 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw IF ( .not. present(qi) ) re_ice(ix,kz,jy) = MAX(10.E-6, MIN(t3(ix,1,kz), 125.E-6)) ENDDO ENDDO + + IF ( present(has_reqr) .and. present( re_rain ) ) THEN + IF ( has_reqr /= 0 ) THEN + DO kz = kts,kte + DO ix = its,ite + re_rain(ix,kz,jy) = MAX(50.E-6, MIN(t4(ix,1,kz), 2999.E-6)) + ENDDO + ENDDO + ENDIF + ENDIF + + IF ( present(has_reqg) .and. present( re_graup ) ) THEN + IF ( has_reqg /= 0 ) THEN + DO kz = kts,kte + DO ix = its,ite + re_graup(ix,kz,jy) = MAX(50.E-6, MIN(t5(ix,1,kz), 10.E-3)) + ENDDO + ENDDO + ENDIF + ENDIF + + IF ( present(has_reqh) .and. present( re_hail ) ) THEN + IF ( has_reqh /= 0 ) THEN + DO kz = kts,kte + DO ix = its,ite + re_hail(ix,kz,jy) = MAX(50.E-6, MIN(t5(ix,1,kz), 40.E-3)) + ENDDO + ENDDO + ENDIF + ENDIF ENDIF ENDIF + IF ( present( hail_maxk1 ) .and. present( hail_max2d ) .and. nwp_diagflag ) THEN + DO ix = its,ite + hailmax1d(ix,1) = hail_max2d(ix,jy) + hailmaxk1(ix,1) = hail_maxk1(ix,jy) + ENDDO + + call hailmaxd(dtp,nx,ny,nz,an,na,nor,nor,alpha2d,dn1, & + hailmax1d,hailmaxk1,1 ) + DO ix = its,ite + hail_max2d(ix,jy) = hailmax1d(ix,1) + hail_maxk1(ix,jy) = hailmaxk1(ix,1) + ENDDO +! ENDIF + ENDIF ! transform concentrations back to mixing ratios DO il = lnb,na IF ( denscale(il) == 1 ) THEN DO kz = kts,kte DO ix = its,ite - an(ix,1,kz,il) = an(ix,1,kz,il)/dn(ix,kz,jy) + an(ix,1,kz,il) = an(ix,1,kz,il)/dn1(ix,1,kz) ! dn(ix,kz,jy) ENDDO ENDDO ENDIF @@ -2790,15 +3273,15 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw qv(ix,kz,jy) = an(ix,1,kz,lv) qc(ix,kz,jy) = an(ix,1,kz,lc) qr(ix,kz,jy) = an(ix,1,kz,lr) - IF ( present(qi) ) qi(ix,kz,jy) = an(ix,1,kz,li) + IF ( flag_qi ) qi(ix,kz,jy) = an(ix,1,kz,li) qs(ix,kz,jy) = an(ix,1,kz,ls) qh(ix,kz,jy) = an(ix,1,kz,lh) IF ( lhl > 1 ) qhl(ix,kz,jy) = an(ix,1,kz,lhl) IF ( lccn > 1 .and. is_aerosol_aware .and. flag_qnwfa ) THEN ! not used here - ELSEIF ( present( cn ) .and. lccn > 1 .and. .not. flag_qndrop) THEN - IF ( lccna > 1 .and. .not. present( cna ) ) THEN + ELSEIF ( flag_ccn .and. lccn > 1 .and. .not. flag_qndrop) THEN + IF ( lccna > 1 .and. .not. ( present( cna ) .and. f_cnatmp ) ) THEN cn(ix,kz,jy) = Max(0.0, an(ix,1,kz,lccna) ) ELSE cn(ix,kz,jy) = an(ix,1,kz,lccn) @@ -2816,6 +3299,21 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw ENDIF ENDIF + IF ( lccnuf > 0 .and. flag_cnuf ) THEN + IF ( i_uf_or_ccn > 0 ) THEN ! UF are ccn and lccnuf is zero, so put cnuf into lccnuf to do decay + an(ix,1,kz,lccnuf) = Max(0.0, cnuf(ix,kz,jy) ) + ENDIF + IF ( decayufccn ) THEN + IF ( an(ix,1,kz,lccnuf) > ufbackground ) THEN + an(ix,1,kz,lccnuf) = an(ix,1,kz,lccnuf) - (an(ix,1,kz,lccnuf) - & + ufbackground)*(1.0 - exp(-dtp/ufccntimeconst)) + ENDIF + ENDIF + cnuf(ix,kz,jy) = an(ix,1,kz,lccnuf) + ENDIF + + + IF ( ipconc >= 5 ) THEN ccw(ix,kz,jy) = an(ix,1,kz,lnc) @@ -2826,6 +3324,11 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw IF ( lhl > 1 ) chl(ix,kz,jy) = an(ix,1,kz,lnhl) ENDIF + IF ( ipconc >= 6 ) THEN + IF ( lzr > 0 ) zrw(ix,kz,jy) = an(ix,1,kz,lzr) *zscaleinv + IF ( lzh > 0 ) zhw(ix,kz,jy) = an(ix,1,kz,lzh) *zscaleinv + IF ( lzhl > 0 ) zhl(ix,kz,jy) = an(ix,1,kz,lzhl)*zscaleinv + ENDIF @@ -2834,6 +3337,9 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw #if ( WRF_CHEM == 1 ) IF ( has_wetscav ) THEN + IF ( loopmax > 1 ) THEN + ! wrferror not supported + ENDIF IF ( PRESENT( rainprod ) ) rainprod(ix,kz,jy) = rainprod2d(ix,kz) IF ( PRESENT( evapprod ) ) evapprod(ix,kz,jy) = evapprod2d(ix,kz) ENDIF @@ -2841,10 +3347,14 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw ENDDO ENDDO - + + ENDDO ! jy - IF ( invertccn .and. present( cn ) ) THEN ! hack to convert unactivated ccn back to activated + + + + IF ( invertccn .and. flag_ccn ) THEN ! hack to convert unactivated ccn back to activated DO jy = jts,jte DO kz = kts,kte DO ix = its,ite @@ -2854,6 +3364,17 @@ SUBROUTINE nssl_2mom_driver(qv, qc, qr, qi, qs, qh, qhl, ccw, crw, cci, csw, chw ENDDO ENDIF + IF ( lccnuf > 1 .and. flag_cnuf .and. ccnuf > 1.0 ) THEN + DO jy = jts,jte + DO kz = kts,kte + DO ix = its,ite + cnuf(ix,kz,jy) = qccnuf - cnuf(ix,kz,jy) + ENDDO + ENDDO + ENDDO + ENDIF + + @@ -3042,7 +3563,6 @@ END function GAMXINFDP ! ##################################################################### -! #ifdef Z3MOM real function gaminterp(ratio, alp, luindex, ilh) implicit none @@ -3086,7 +3606,6 @@ real function gaminterp(ratio, alp, luindex, ilh) ! ENDIF END FUNCTION gaminterp -! #endif /* Z3MOM */ ! ##################################################################### !**************************** GAML02 *********************** @@ -3136,7 +3655,7 @@ END FUNCTION GAML02 ! It is used for qiacr with the gamma of volume to calculate what ! fraction of drops exceed a certain size (this version is for 300 micron drops) (see zieglerstuff.nb) ! ********************************************************** - real FUNCTION GAML02d300(x) + real FUNCTION GAML02d300(x) implicit none integer ig, i, ii, n, np real x @@ -3429,7 +3948,7 @@ Function delabk(ba,bb,nua,nub,mua,mub,k) del = tmp - dgam*i IF ( i+1 > ngm0 ) THEN write(0,*) 'delabk: i+1 > ngm0!!!!',i,ngm0,nua,mua,tmp - STOP + STOP ENDIF g1pnua = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami ! write(91,*) 'delabk: g1pnua,gamma = ',g1pnua,Gamma_sp((1. + nua)/mua) @@ -3468,7 +3987,8 @@ Function delabk(ba,bb,nua,nub,mua,mub,k) RETURN END Function delabk - + + ! ##################################################################### ! @@ -3488,7 +4008,238 @@ end subroutine cld_cpu ! !-------------------------------------------------------------------------- ! - subroutine sediment1d(dtp,nx,ny,nz,an,na,nor,norz,xfall,dn,dz3d,dz3dinv, & +! ####################################################################### +! HAILMAXD - calculated maximum expected hail size +! ####################################################################### + subroutine hailmaxd(dtp,nx,ny,nz,an,na,nor,norz,alpha2d,dn, & + & hailmax1d,hailmaxk1,jslab ) +! +! Calculate maximum hail size from the tail of of the distribution. The value +! of thresh_conc sets the minimum concentration in the integral over (Dmax, Inf). +! This uses the lookup tables for incomplete gamma functions and simply search for +! the expected value (and linearly interpolate) on D. +! +! Written by ERM 7/2023 +! +! +! + implicit none + + integer nx,ny,nz,nor,norz,ngt,jgs,na,ia + integer id ! =1 use density, =0 no density +! integer :: its,ite ! x-range to calculate + + integer ng1 + parameter(ng1 = 1) + + real an(-nor+1:nx+nor,-nor+1:ny+nor,-norz+1:nz+norz,na) + real dn(-nor+1:nx+nor,-nor+1:ny+nor,-norz+1:nz+norz) + +! real gz(-nor+ng1:nz+nor),z1d(-nor+ng1:nz+nor,4) + real dtp + real alpha2d(-nor+1:nx+nor,1,-norz+1:nz+norz,3) ! array for PSD shape parameters + real :: hailmax1d(nx,ny),hailmaxk1(nx,ny) + integer infdo + integer jslab ! which line of xfall to use + + integer ix,jy,kz,ndfall,n,k,il,in + double precision :: tmp, ratio, del, g1palp + real, parameter :: dz = 200. + + real :: db1(nx,nz+1),dtz1(nz+1,nx,0:1),dz2dinv(nz+1,nx),db1inv(nx,nz+1) + + real :: rhovtzx(nz,nx) + + real :: alp, diam, diam1, hwdn + +! real, parameter :: cmin = 0.001 ! threshold number per m^3 for maximum diamter (threshold from diag_nwp) + DOUBLE PRECISION, PARAMETER:: thresh_conc = 0.0005d0 ! number conc. of graupel/hail per cubic meter + real :: cwchtmp,cwchltmp, maxdia + +!----------------------------------------------------------------------------- + + integer :: ixb, jyb, kzb + integer :: ixe, jye, kze + integer :: plo, phi + integer :: ialp, i, j + + logical :: debug_mpi = .TRUE. + +! ################################################################### + + + IF ( lh > 1 ) THEN + cwchtmp = ((3. + dnu(lh))*(2. + dnu(lh))*(1.0 + dnu(lh)))**(-1./3.) + ENDIF + IF ( lhl > 1 ) THEN + cwchltmp = ((3. + dnu(lhl))*(2. + dnu(lhl))*(1.0 + dnu(lhl)))**(-1./3.) + ENDIF + + + kzb = 1 + kze = nz + + ixb = 1 ! aliased its + ixe = nx ! aliased ite + + + jy = jslab + jgs = jy + + +! hailmax1d(:,jy) = 0.0 +! hailmaxk1(:,jy) = 0.0 + + if ( ndebug .gt. 0 ) write(0,*) 'dbg = 3a' + + +! first graupel, even if hail is also predicted, since graupel can sometime be large on its own + IF ( lh > 1 .and. lnh > 1 ) THEN + DO kz = kzb,kze + DO ix = ixb,ixe + IF ( an(ix,jy,kz,lh) .gt. qxmin(lh) .and. an(ix,jy,kz,lnh) .gt. thresh_conc ) THEN + IF ( lvh .gt. 1 ) THEN + hwdn = dn(ix,jy,kz)*an(ix,jy,kz,lh)/an(ix,jy,kz,lvh) + ELSE + hwdn = rho_qh + ENDIF + + tmp = 1. + alpha2d(ix,1,kz,2) + i = Int(dgami*(tmp)) + del = tmp - dgam*i + g1palp = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami + + tmp = dn(ix,jy,kz)*an(ix,jy,kz,lh)/(hwdn*an(ix,jy,kz,lnh)) + diam = (6.0*tmp/pi)**(1./3.) + IF ( lzh > 1 ) THEN ! 3moment + cwchtmp = ((3. + alpha2d(ix,1,kz,2))*(2. + alpha2d(ix,1,kz,2))*(1.0 + alpha2d(ix,1,kz,2)))**(-1./3.) + ENDIF + diam1 = diam*cwchtmp ! characteristic diameter, i.e., 1/lambda + ! want cxd1 = thresh_conc + ! tmp = gaminterp(ratio,alpha(mgs,lh),1,1) + ! cxd1 = cx(mgs,lh)*(tmp)/g1palp + ! tmp = thresh_conc*g1palp/cx + ! + tmp = thresh_conc*g1palp/an(ix,jy,kz,lnh) + alp = alpha2d(ix,1,kz,2) + ! gamxinflu(i,j,luindex,ilh) + j = Int(Max(0.0,Min(maxalphalu,alp))*dqiacralphainv) + ratio = 0.0 + maxdia = 0.0 + ! eventually could replace with bisection search, but final value of i is usually small + ! compared to nqiacrratio + DO i = 0,nqiacrratio-1 + IF ( gamxinflu(i,j,1,1) >= tmp .and. tmp >= gamxinflu(i+1,j,1,1) ) THEN + ! interpolate here for FWIW + ratio = i*dqiacrratio + del = tmp - gamxinflu(i,j,1,1) + ratio = (float(i) + del/(gamxinflu(i+1,j,1,1) - gamxinflu(i,j,1,1)))*dqiacrratio + exit + ENDIF + ENDDO + + IF ( ratio > 0.0 ) THEN + maxdia = ratio*diam1 ! units of m + ENDIF + + IF ( kz == kzb ) THEN + hailmaxk1(ix,jy) = Max( maxdia, hailmaxk1(ix,jy) ) +! IF ( maxdia > 0.1 ) THEN +! IF ( an(ix,jy,kz,lh) > 1.e-4 ) THEN +! write(0,*) 'maxdia,tmp,alp,ratio,diam,diam1= ',maxdia,tmp,alp,ratio,diam*100.,diam1*100. +! write(0,*) 'hwdn, cxhl, qx, g1palp = ',hwdn, an(ix,jy,kz,lnhl), an(ix,jy,kz,lhl), g1palp +! write(0,*) 'j,gamxinflu(0,2,4) = ',j,gamxinflu(0,j,1,1),gamxinflu(2,j,1,1), & +! gamxinflu(4,j,1,1) +! ENDIF + ENDIF + + hailmax1d(ix,jy) = Max(maxdia, hailmax1d(ix,jy) ) + + ! + + ENDIF + + ENDDO + ENDDO + + ENDIF ! lh + +! And diam for hail if present + IF ( lhl > 1 .and. lnhl > 1 ) THEN + DO kz = kzb,kze + DO ix = ixb,ixe + IF ( an(ix,jy,kz,lhl) .gt. qxmin(lhl) .and. an(ix,jy,kz,lnhl) .gt. thresh_conc ) THEN + IF ( lvhl .gt. 1 ) THEN + hwdn = dn(ix,jy,kz)*an(ix,jy,kz,lhl)/an(ix,jy,kz,lvhl) + ELSE + hwdn = rho_qhl + ENDIF + + tmp = 1. + alpha2d(ix,1,kz,3) + i = Int(dgami*(tmp)) + del = tmp - dgam*i + g1palp = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami + + tmp = dn(ix,jy,kz)*an(ix,jy,kz,lhl)/(hwdn*an(ix,jy,kz,lnhl)) + diam = (6.0*tmp/pi)**(1./3.) + IF ( lzhl > 1 ) THEN ! 3moment + cwchltmp = ((3. + alpha2d(ix,1,kz,3))*(2. + alpha2d(ix,1,kz,3))*(1.0 + alpha2d(ix,1,kz,3)))**(-1./3.) + ENDIF + diam1 = diam*cwchltmp ! characteristic diameter, i.e., 1/lambda + ! want cxd1 = thresh_conc + ! tmp = gaminterp(ratio,alpha(mgs,lh),1,1) + ! cxd1 = cx(mgs,lh)*(tmp)/g1palp + ! tmp = thresh_conc*g1palp/cx + ! + tmp = thresh_conc*g1palp/an(ix,jy,kz,lnhl) + alp = alpha2d(ix,1,kz,3) + ! gamxinflu(i,j,luindex,ilh) + j = Int(Max(0.0,Min(maxalphalu,alp))*dqiacralphainv) + ratio = 0.0 + maxdia = 0.0 + ! eventually could replace with bisection search, but final value of i is usually small + ! compared to nqiacrratio + DO i = 0,nqiacrratio-1 + IF ( gamxinflu(i,j,1,1) >= tmp .and. tmp >= gamxinflu(i+1,j,1,1) ) THEN + ! interpolate here for FWIW + ratio = i*dqiacrratio + del = tmp - gamxinflu(i,j,1,1) + ratio = (float(i) + del/(gamxinflu(i+1,j,1,1) - gamxinflu(i,j,1,1)))*dqiacrratio + exit + ENDIF + ENDDO + + IF ( ratio > 0.0 ) THEN + maxdia = ratio*diam1 ! units of m + ENDIF + + IF ( kz == kzb ) THEN + hailmaxk1(ix,jy) = Max( maxdia, hailmaxk1(ix,jy) ) +! IF ( maxdia > 0.1 ) THEN +! IF ( an(ix,jy,kz,lhl) > 1.e-4 ) THEN +! write(0,*) 'maxdia,tmp,alp,ratio,diam,diam1= ',maxdia,tmp,alp,ratio,diam*100.,diam1*100. +! write(0,*) 'hwdn, cxhl, qx, g1palp = ',hwdn, an(ix,jy,kz,lnhl), an(ix,jy,kz,lhl), g1palp +! write(0,*) 'j,gamxinflu(0,2,4) = ',j,gamxinflu(0,j,1,1),gamxinflu(2,j,1,1), & +! gamxinflu(4,j,1,1) +! ENDIF + ENDIF + + hailmax1d(ix,jy) = Max(maxdia, hailmax1d(ix,jy) ) + + ! + + ENDIF + + ENDDO + ENDDO + + ENDIF + + + END SUBROUTINE HAILMAXD +! ####################################################################### +! ####################################################################### + subroutine sediment1d(dtp,nx,ny,nz,an,na,nor,norz,xfall,dn,dz3d,dz3dinv, & & t0,t7,infdo,jslab,its,jts, & & timesed1,timesed2,timesed3,zmaxsed,timesetvt) ! used for timing ! @@ -3517,7 +4268,7 @@ subroutine sediment1d(dtp,nx,ny,nz,an,na,nor,norz,xfall,dn,dz3d,dz3dinv, & ! real gz(-nor+ng1:nz+nor),z1d(-nor+ng1:nz+nor,4) real dtp real xfall(nx,ny,na) ! array for stuff landing on the ground - real xfall0(nx,ny) ! dummy array +! real xfall0(nx,ny) ! dummy array integer infdo integer jslab ! which line of xfall to use @@ -3525,47 +4276,81 @@ subroutine sediment1d(dtp,nx,ny,nz,an,na,nor,norz,xfall,dn,dz3d,dz3dinv, & real tmp, vtmax, dtptmp, dtfrac real, parameter :: dz = 200. - real :: xvt(nz+1,nx,3,lc:lhab) ! (nx,nz,2,lc:lhab) ! 1=mass-weighted, 2=number-weighted - real :: tmpn(-nor+ng1:nx+nor,-nor+ng1:ny+nor,-norz+ng1:nz+norz) - real :: tmpn2(-nor+ng1:nx+nor,-nor+ng1:ny+nor,-norz+ng1:nz+norz) - real :: z(-nor+ng1:nx+nor,-norz+ng1:nz+norz,lr:lhab) - real :: db1(nx,nz+1),dtz1(nz+1,nx,0:1),dz2dinv(nz+1,nx),db1inv(nx,nz+1) +! real :: xvt(nz+1,nx,3,lc:lhab) ! (nx,nz,2,lc:lhab) ! 1=mass-weighted, 2=number-weighted +! real :: tmpn(-nor+ng1:nx+nor,-nor+ng1:ny+nor,-norz+ng1:nz+norz) +! real :: tmpn2(-nor+ng1:nx+nor,-nor+ng1:ny+nor,-norz+ng1:nz+norz) +! real :: z(-nor+ng1:nx+nor,-norz+ng1:nz+norz,lr:lhab) +! real :: db1(nx,nz+1),dtz1(nz+1,nx,0:1),dz2dinv(nz+1,nx),db1inv(nx,nz+1) - real :: rhovtzx(nz,nx) +! real :: rhovtzx(nz,nx) + + real, allocatable :: db1(:,:), dtz1(:,:,:),dz2dinv(:,:),db1inv(:,:) ! db1(nx,nz+1),dtz1(nz+1,nx,0:1),dz2dinv(nz+1,nx),db1inv(nx,nz+1) + real, allocatable :: rhovtzx(:,:) + real, allocatable :: xfall0(:,:), xvt(:,:,:,:),tmpn(:,:,:),tmpn2(:,:,:),z(:,:,:) double precision :: timesed1,timesed2,timesed3, zmaxsed,timesetvt,dummy double precision :: dt1,dt2,dt3,dt4 - integer,parameter :: ngs = 128 + integer :: ngs ! = 512 integer :: ngscnt,mgs,ipconc0 - real :: qx(ngs,lv:lhab) - real :: qxw(ngs,ls:lhab) - real :: cx(ngs,lc:lhab) - real :: xv(ngs,lc:lhab) - real :: vtxbar(ngs,lc:lhab,3) - real :: xmas(ngs,lc:lhab) - real :: xdn(ngs,lc:lhab) - real :: xdia(ngs,lc:lhab,3) - real :: vx(ngs,li:lhab) - real :: alpha(ngs,lc:lhab) - real :: zx(ngs,lr:lhab) - logical :: hasmass(nx,lc+1:lhab) - - integer igs(ngs),kgs(ngs) - - real rho0(ngs),temcg(ngs) - - real temg(ngs) - - real rhovt(ngs) - - real cwnc(ngs),cinc(ngs) - real fadvisc(ngs),cwdia(ngs),cipmas(ngs) - - real cimasn,cimasx,cnina(ngs),cimas(ngs) - - real cnostmp(ngs) +! real :: qx(ngs,lv:lhab) +! real :: qxw(ngs,ls:lhab) +! real :: cx(ngs,lc:lhab) +! real :: xv(ngs,lc:lhab) +! real :: vtxbar(ngs,lc:lhab,3) +! real :: xmas(ngs,lc:lhab) +! real :: xdn(ngs,lc:lhab) +! real :: xdia(ngs,lc:lhab,3) +! real :: vx(ngs,li:lhab) +! real :: alpha(ngs,lc:lhab) +! real :: zx(ngs,lr:lhab) +! logical :: hasmass(nx,lc+1:lhab) +! +! integer igs(ngs),kgs(ngs) +! +! real rho0(ngs),temcg(ngs) +! +! real temg(ngs) +! +! real rhovt(ngs) +! +! real cwnc(ngs),cinc(ngs) +! real fadvisc(ngs),cwdia(ngs),cipmas(ngs) +! +! real cimasn,cimasx,cnina(ngs),cimas(ngs) +! +! real cnostmp(ngs) + + real, allocatable :: qx(:,:) + real, allocatable :: qxw(:,:) + real, allocatable :: cx(:,:) + real, allocatable :: xv(:,:) + real, allocatable :: vtxbar(:,:,:) + real, allocatable :: xmas(:,:) + real, allocatable :: xdn(:,:) + real, allocatable :: xdia(:,:,:) + real, allocatable :: vx(:,:) + real, allocatable :: alpha(:,:) + real, allocatable :: zx(:,:) + logical, allocatable :: hasmass(:,:) + + integer, allocatable :: igs(:),kgs(:) + + real, allocatable :: rho0(:),temcg(:) + + real, allocatable :: temg(:) + + real, allocatable :: rhovt(:) + + real, allocatable :: cwnc(:),cinc(:) + real, allocatable :: fadvisc(:),cwdia(:),cipmas(:) + + real, allocatable :: cnina(:),cimas(:) + + real, allocatable :: cnostmp(:) + + real :: cimasn,cimasx !----------------------------------------------------------------------------- @@ -3579,7 +4364,30 @@ subroutine sediment1d(dtp,nx,ny,nz,an,na,nor,norz,xfall,dn,dz3d,dz3dinv, & ! ################################################################### - + allocate( db1(nx,nz+1),dtz1(nz+1,nx,0:1),dz2dinv(nz+1,nx),db1inv(nx,nz+1),rhovtzx(nz,nx) ) + allocate( xfall0(nx,ny), xvt(nz+1,nx,3,lc:lhab), tmpn(-nor+ng1:nx+nor,-nor+ng1:ny+nor,-norz+ng1:nz+norz) ) + allocate( tmpn2(-nor+ng1:nx+nor,-nor+ng1:ny+nor,-norz+ng1:nz+norz), z(-nor+ng1:nx+nor,-norz+ng1:nz+norz,lr:lhab)) + + ngs = nz+3 + + allocate( qx(ngs,lv:lhab), & + qxw(ngs,ls:lhab), & + cx(ngs,lc:lhab), & + xv(ngs,lc:lhab), & + vtxbar(ngs,lc:lhab,3), & + xmas(ngs,lc:lhab), & + xdn(ngs,lc:lhab), & + xdia(ngs,lc:lhab,3), & + vx(ngs,li:lhab), & + alpha(ngs,lc:lhab), & + zx(ngs,lr:lhab), & + hasmass(nx,lc+1:lhab), & + igs(ngs),kgs(ngs), & + rho0(ngs),temcg(ngs),temg(ngs), rhovt(ngs), & + cwnc(ngs),cinc(ngs), & + fadvisc(ngs),cwdia(ngs),cipmas(ngs), & + cnina(ngs),cimas(ngs), & + cnostmp(ngs) ) kzb = 1 kze = nz @@ -3717,13 +4525,15 @@ subroutine sediment1d(dtp,nx,ny,nz,an,na,nor,norz,xfall,dn,dz3d,dz3dinv, & DO n = 1,ndfall - IF ( do_accurate_sedimentation .and. n .ge. 2 .and. ( n == n*(n/interval_sedi_vt) ) ) THEN + IF ( do_accurate_sedimentation .and. n .ge. 2 .and. ( n == interval_sedi_vt*(n/interval_sedi_vt) ) ) THEN ! ! zero the precip flux arrays (2d) ! -! xvt(:,:,:,il) = 0.0 dummy = 0.d0 + + xvt(kzb:kze,ix,1:3,il) = 0.0 ! reset to zero because routine will only compute points with q > qmin + call ziegfall1d(nx,ny,nz,nor,norz,na,dtp,jgs,ix, & & xvt, rhovtzx, & & an,dn,ipconc,t0,t7,cwmasn,cwmasx, & @@ -3749,7 +4559,8 @@ subroutine sediment1d(dtp,nx,ny,nz,an,na,nor,norz,xfall,dn,dz3d,dz3dinv, & IF ( il >= lr .and. ( infall .eq. 3 .or. infall .eq. 4 ) .and. ln(il) > 0 ) THEN - IF ( (il .eq. lr .and. irfall .eq. infall .and. lzr < 1) .or. (il .ge. lh .and. lz(il) .lt. 1 ) ) THEN + IF ( (il .eq. lr .and. irfall .eq. infall .and. lzr < 1) .or. & + (il .ge. lh .and. lz(il) .lt. 1 ) .or. (il == ls .and. isfall == infall ) ) THEN call calczgr1d(nx,ny,nz,nor,na,an,ixe,kze, & & z,db1,jgs,ipconc, dnu(il), il, ln(il), qxmin(il), xvmn(il), xvmx(il), lvol(il), xdn0(il), ix ) ENDIF @@ -3774,6 +4585,14 @@ subroutine sediment1d(dtp,nx,ny,nz,an,na,nor,norz,xfall,dn,dz3d,dz3dinv, & ENDIF ENDIF +! reflectivity + + IF ( ipconc .ge. 6 ) THEN + IF ( lz(il) .gt. 1 ) THEN + call fallout1d(nx,ny,nz,nor,na,dtptmp,dtfrac,jgs,xvt(1,1,3,il), & + & an,db1,lz(il),0,xfall,dtz1,ix) + ENDIF + ENDIF if (ndebug .gt. 0 ) write(0,*) 'dbg = 3d' @@ -3787,9 +4606,11 @@ subroutine sediment1d(dtp,nx,ny,nz,an,na,nor,norz,xfall,dn,dz3d,dz3dinv, & ! to put a lower bound on number conc. ! - IF ( ( infall .eq. 3 .or. infall .eq. 4 ) .and. ( il .eq. lh .or. il .eq. lhl .or. & + IF ( ( infall .eq. 3 .or. infall .eq. 4 ) .and. ( (il == ls .and. isfall .eq. infall ) & + & .or. il .eq. lh .or. il .eq. lhl .or. il == lf .or. & & ( il .eq. lr .and. irfall .eq. infall) ) ) THEN + ! set up for method I+II DO kz = kzb,kze ! DO ix = ixb,ixe tmpn2(ix,jy,kz) = z(ix,kz,il) @@ -3802,7 +4623,7 @@ subroutine sediment1d(dtp,nx,ny,nz,an,na,nor,norz,xfall,dn,dz3d,dz3dinv, & ENDDO ELSE - + ! set up for method II only DO kz = kzb,kze ! DO ix = ixb,ixe tmpn(ix,jy,kz) = an(ix,jy,kz,ln(il)) @@ -3831,7 +4652,8 @@ subroutine sediment1d(dtp,nx,ny,nz,an,na,nor,norz,xfall,dn,dz3d,dz3dinv, & xfall0(:,jgs) = 0.0 IF ( ( infall .eq. 3 .or. infall .eq. 4 ) .and. & - & ( il .ge. lh .or. (il .eq. lr .and. irfall .eq. infall) ) ) THEN + & ( il .ge. lh .or. (il .eq. lr .and. irfall .eq. infall) & + .or. (il .eq. ls .and. isfall .eq. infall) ) ) THEN call fallout1d(nx,ny,nz,nor,1,dtptmp,dtfrac,jgs,xvt(1,1,3,il), & & tmpn2,db1,1,0,xfall0,dtz1,ix) call fallout1d(nx,ny,nz,nor,1,dtptmp,dtfrac,jgs,xvt(1,1,1,il), & @@ -3842,12 +4664,12 @@ subroutine sediment1d(dtp,nx,ny,nz,an,na,nor,norz,xfall,dn,dz3d,dz3dinv, & ENDIF IF ( ( infall .eq. 3 .or. infall .eq. 4 ) .and. ( (il .eq. lr .and. irfall .eq. infall) & - & .or. il .ge. lh ) ) THEN + & .or. il .ge. lh .or. (il == ls .and. isfall .eq. infall ) ) ) THEN ! "Method I" - dbz correction call calcnfromz1d(nx,ny,nz,nor,na,an,tmpn2,ixe,kze, & & z,db1,jgs,ipconc, dnu(il), il, ln(il), qxmin(il), xvmn(il), xvmx(il),tmpn, & - & lvol(il), rho_qh, infall, ix) + & lvol(il), xdn0(il), infall, ix) ELSEIF ( infall .eq. 5 .and. il .ge. lh .or. ( il == lr .and. irfall == 5 ) ) THEN @@ -3858,7 +4680,7 @@ subroutine sediment1d(dtp,nx,ny,nz,an,na,nor,norz,xfall,dn,dz3d,dz3dinv, & ! ENDDO ENDDO - ELSEIF ( .not. (il .eq. lr .and. irfall .eq. 0) ) THEN + ELSEIF ( .not. (il .eq. lr .and. irfall .eq. 0) .and. .not. (il .eq. ls .and. isfall .eq. 0) ) THEN ! "Method II" M-wgt N-fallout correction DO kz = kzb,kze @@ -3885,8 +4707,29 @@ subroutine sediment1d(dtp,nx,ny,nz,an,na,nor,norz,xfall,dn,dz3d,dz3dinv, & ENDDO ! ix + deallocate( db1,dtz1,dz2dinv,db1inv,rhovtzx ) + deallocate( xfall0, xvt, tmpn ) + deallocate( tmpn2, z) + + deallocate( qx, & + qxw, & + cx, & + xv, & + vtxbar, & + xmas, & + xdn, & + xdia, & + vx, & + alpha, & + zx, & + hasmass, & + igs,kgs, & + rho0,temcg,temg, rhovt, & + cwnc,cinc, & + fadvisc,cwdia,cipmas, & + cnina,cimas, & + cnostmp ) - RETURN END SUBROUTINE SEDIMENT1D @@ -4040,13 +4883,14 @@ subroutine calczgr1d(nx,ny,nz,nor,na,a,ixe,kze, & integer ix,jy,kz - real vr,qr,nrx,rd,xv,g1,zx,chw,xdn + real vr,qr,nrx,rd,xv,g1,zx,chw,xdn,ynu jy = jgs ix = ixcol - IF ( l .eq. lh .or. l .eq. lhl .or. ( l .eq. lr .and. imurain == 1 ) ) THEN + IF ( l .eq. lh .or. l .eq. lhl .or. ( l .eq. lr .and. imurain == 1 ) & + .or. ( l .eq. ls .and. imusnow == 1 ) ) THEN DO kz = 1,kze @@ -4096,16 +4940,19 @@ subroutine calczgr1d(nx,ny,nz,nor,na,a,ixe,kze, & ENDDO - ELSEIF ( l .eq. lr .and. imurain == 3) THEN + ELSEIF ( (l == ls .and. imusnow == 3) .or. ( l .eq. lr .and. imurain == 3 ) ) THEN - xdn = 1000. + xdn = rho_qx ! 1000. + IF ( l == ls ) ynu = snu + IF ( l == lr ) ynu = rnu DO kz = 1,kze + IF ( a(ix,jy,kz,l) .gt. qmin .and. a(ix,jy,kz,ln) .gt. 1.e-15 ) THEN vr = db(ix,kz)*a(ix,jy,kz,l)/(xdn*a(ix,jy,kz,ln)) -! z(ix,kz,l) = 3.6e18*(rnu+2.0)*a(ix,jy,kz,ln)*vr**2/(rnu+1.0) - z(ix,kz,l) = 3.6*(rnu+2.0)*a(ix,jy,kz,ln)*vr**2/(rnu+1.0) +! z(ix,kz,l) = 3.6e18*(ynu+2.0)*a(ix,jy,kz,ln)*vr**2/(ynu+1.0) + z(ix,kz,l) = 3.6*(ynu+2.0)*a(ix,jy,kz,ln)*vr**2/(ynu+1.0) ! qr = a(ix,jy,kz,lr) ! nrx = a(ix,jy,kz,lnr) @@ -4319,13 +5166,17 @@ END subroutine calcnfromz1d ! ############################################################################## ! ! Subroutine to calculate number concentrations from initial state that has only mixing ratio. -! N will be in #/kg, NOT #/m^3, since sedimentation is done next. -! +! Output N will be in #/m^3 in 'an' array, since sedimentation is done next. +! Output ccw,cci etc. will be in #/kg ! ! 10.27.2015: Added hail calculation ! - subroutine calcnfromq(nx,ny,nz,an,na,nor,norz,dn) + subroutine calcnfromq(nx,ny,nz,an,na,nor,norz,dn, & + & qcw,qci,qsw,qrw,qhw,qhl, & + & ccw,cci,csw,crw,chw,chl, & + & cccn,cccna, vhw,vhl,qv,spechum, invertccn_flag, cwmasin ) + implicit none @@ -4335,6 +5186,12 @@ subroutine calcnfromq(nx,ny,nz,an,na,nor,norz,dn) real an(-nor+1:nx+nor,-nor+1:ny+nor,-norz+1:nz+norz,na) ! scalars (q, N, Z) real dn(nx,nz+1) ! air density + + real, optional, dimension(nx,nz), intent(inout) :: qcw,qci,qsw,qrw,qhw,qhl, & + ccw,cci,csw,crw,chw,chl, & + cccn,cccna,vhw,vhl,qv, spechum + logical, optional, intent(in) :: invertccn_flag + real, optional :: cwmasin integer ixe,kze real alpha @@ -4346,7 +5203,7 @@ subroutine calcnfromq(nx,ny,nz,an,na,nor,norz,dn) integer ix,jy,kz - double precision vr,q,nrx,nrx2,rd,g1h,g1hl,g1r,g1s,zx,chw,z,znew,zt,zxt,n1,laminv1 + double precision vr,q,nrx,nrx2,rd,g1h,g1hl,g1r,g1s,zx,z,znew,zt,zxt,n1,laminv1 double precision :: zr, zs, zh, dninv real, parameter :: xn0s = 3.0e6, xn0r = 8.0e6, xn0h = 2.0e5, xn0hl = 4.0e4 real, parameter :: xdnr = 1000., xdns = 100. ,xdnh = 700.0, xdnhl = 900.0 @@ -4359,11 +5216,24 @@ subroutine calcnfromq(nx,ny,nz,an,na,nor,norz,dn) real, parameter :: xgms=xdnh*0.523599*(300.e-6)**3 ! mks (300 micron diam sphere approx) real, parameter :: cwmas09 = 1000.*0.523599*(2.*9.e-6)**3 ! mass of 9-micron radius droplet - real xv,xdn + real xv,xdn,cwmasinv integer :: ndbz, nmwgt, nnwgt, nwlessthanz + double precision :: mixconv, mixconvqv, qsmax,qsmax2,qsmax3,qsmax4 + logical :: invertccn_local ! ------------------------------------------------------------------ + IF ( present( invertccn_flag ) ) THEN + invertccn_local = invertccn_flag + ELSE + invertccn_local = .false. + ENDIF + + IF ( present( cwmasin ) ) THEN + cwmasinv = 1.0/cwmasin + ELSE + cwmasinv = 1.0/cwmas09 + ENDIF jy = 1 @@ -4382,18 +5252,59 @@ subroutine calcnfromq(nx,ny,nz,an,na,nor,norz,dn) ENDIF g1s = (snu+2.0)/(snu+1.0) - + qsmax = 0 + qsmax2 = 0 + qsmax3 = 0 + qsmax4 = 0 +! IF ( .not. present( qcw ) ) THEN DO kz = 1,nz DO ix = 1,nx ! ixcol +! qv_mp = spechum/(1.0_kind_phys-spechum) +! IF ( convertdry ) THEN +! qc_mp = qc/(1.0_kind_phys-spechum) + mixconv = 1 + IF ( present( spechum ) ) THEN ! convert to "dry" mixing ratios + an(ix,jy,kz,lv) = spechum(ix,kz)/(1.0d0 - spechum(ix,kz)) + mixconv = 1.0d0/(1.0d0 - spechum(ix,kz)) + ELSE + mixconv = 1.0d0 + ENDIF + IF ( present( qv ) ) an(ix,jy,kz,lv) = qv(ix,kz) ! assume qv is "dry" mixing ratio if passed in + IF ( present( qcw ) ) an(ix,jy,kz,lc) = qcw(ix,kz)*mixconv + IF ( present( qrw ) ) an(ix,jy,kz,lr) = qrw(ix,kz)*mixconv + IF ( present( qci ) ) an(ix,jy,kz,li) = qci(ix,kz)*mixconv + IF ( present( qsw ) ) THEN + an(ix,jy,kz,ls) = qsw(ix,kz)*mixconv +! qsmax = Max( qsmax, qsw(ix,kz) ) +! qsmax2 = Max( qsmax2, an(ix,jy,kz,ls) ) + ENDIF + IF ( present( qhw ) ) an(ix,jy,kz,lh) = qhw(ix,kz)*mixconv + IF ( lhl > 1 .and. present( qhl ) ) an(ix,jy,kz,lhl) = qhl(ix,kz)*mixconv + IF ( present( ccw ) ) an(ix,jy,kz,lnc) = ccw(ix,kz)*mixconv*dn(ix,kz) + IF ( present( crw ) ) an(ix,jy,kz,lnr) = crw(ix,kz)*mixconv*dn(ix,kz) + IF ( present( cci ) ) an(ix,jy,kz,lni) = cci(ix,kz)*mixconv*dn(ix,kz) + IF ( present( csw ) ) an(ix,jy,kz,lns) = csw(ix,kz)*mixconv*dn(ix,kz) + IF ( present( chw ) ) an(ix,jy,kz,lnh) = chw(ix,kz)*mixconv*dn(ix,kz) + IF ( lhl > 1 .and. present( chl ) ) an(ix,jy,kz,lnhl) = chl(ix,kz)*mixconv*dn(ix,kz) + IF ( lvh > 1 .and. present( vhw ) ) an(ix,jy,kz,lvh) = vhw(ix,kz)*mixconv + IF ( lvhl > 1 .and. present( vhl ) ) an(ix,jy,kz,lvhl) = vhl(ix,kz)*mixconv + IF ( lccn > 1 .and. present( cccn ) ) an(ix,jy,kz,lccn) = cccn(ix,kz)*mixconv*dn(ix,kz) + IF ( lccna > 1 .and. present( cccna ) ) an(ix,jy,kz,lccna) = cccna(ix,kz)*mixconv + dninv = 1./dn(ix,kz) +! IF ( .not. present( qcw ) ) THEN ! Cloud droplets IF ( lnc > 1 ) THEN IF ( an(ix,jy,kz,lnc) <= cxmin .and. an(ix,jy,kz,lc) > qxmin_init(lc) ) THEN - an(ix,jy,kz,lnc) = Min(qccn, an(ix,jy,kz,lc)/cwmas09 )*dn(ix,kz) + an(ix,jy,kz,lnc) = Min(qccn, an(ix,jy,kz,lc)*cwmasinv )*dn(ix,kz) + + IF ( invertccn_local ) THEN + an(ix,jy,kz,lccn) = an(ix,jy,kz,lccn) + an(ix,jy,kz,lnc) + ELSE IF ( lccn > 1 .and. lccna < 1 ) THEN an(ix,jy,kz,lccn) = an(ix,jy,kz,lccn) - an(ix,jy,kz,lnc) @@ -4401,6 +5312,7 @@ subroutine calcnfromq(nx,ny,nz,an,na,nor,norz,dn) IF ( lccna > 1 ) THEN an(ix,jy,kz,lccna) = an(ix,jy,kz,lccna) + an(ix,jy,kz,lnc) ENDIF + ENDIF ELSEIF ( an(ix,jy,kz,lc) <= qxmin(lc) .or. & ( an(ix,jy,kz,lnc) <= cxmin .and. an(ix,jy,kz,lc) <= qxmin_init(lc)) ) THEN @@ -4449,6 +5361,15 @@ subroutine calcnfromq(nx,ny,nz,an,na,nor,norz,dn) ENDIF ENDIF + IF ( lzr > 1 ) THEN ! set reflectivity moment + IF ( an(ix,jy,kz,lr) > qxmin_init(lr) .and. an(ix,jy,kz,lzr) < zxmin .and. & + an(ix,jy,kz,lnr) > cxmin ) THEN + q = an(ix,jy,kz,lr) + nrx = an(ix,jy,kz,lnr) + an(ix,jy,kz,lzr) = 36.*g1r*dn(ix,kz)**2*q**2/(pi**2*xdnr**2*nrx) ! *dninv + ENDIF + ENDIF + ! snow IF ( lns > 1 ) THEN IF ( an(ix,jy,kz,lns) <= 0.1*cxmin .and. an(ix,jy,kz,ls) > qxmin_init(ls) ) THEN @@ -4511,6 +5432,15 @@ subroutine calcnfromq(nx,ny,nz,an,na,nor,norz,dn) ENDIF ENDIF + IF ( lzh > 1 ) THEN ! set reflectivity moment + IF ( an(ix,jy,kz,lh) > qxmin_init(lh) .and. an(ix,jy,kz,lzh) < zxmin .and. & + an(ix,jy,kz,lnh) > cxmin ) THEN + q = an(ix,jy,kz,lh) + nrx = an(ix,jy,kz,lnh) + an(ix,jy,kz,lzh) = 36.*g1h*dn(ix,kz)**2*q**2/(pi**2*xdnh**2*nrx) ! *dninv + ENDIF + ENDIF + ! hail IF ( lnhl > 1 .and. lhl > 1 ) THEN @@ -4531,7 +5461,6 @@ subroutine calcnfromq(nx,ny,nz,an,na,nor,norz,dn) an(ix,jy,kz,lnhl) = nrx ! *dninv ! convert to number mixing ratio - ELSEIF ( an(ix,jy,kz,lhl) <= qxmin(lhl) .or. & ( an(ix,jy,kz,lnhl) <= cxmin .and. an(ix,jy,kz,lhl) <= qxmin_init(lhl)) ) THEN @@ -4540,12 +5469,68 @@ subroutine calcnfromq(nx,ny,nz,an,na,nor,norz,dn) ENDIF ENDIF - - ENDDO ! ix - ENDDO ! kz - - RETURN - + + IF ( lzhl > 1 ) THEN ! set reflectivity moment + IF ( an(ix,jy,kz,lhl) > qxmin_init(lhl) .and. an(ix,jy,kz,lzhl) < zxmin .and. & + an(ix,jy,kz,lnhl) > cxmin ) THEN + q = an(ix,jy,kz,lhl) + nrx = an(ix,jy,kz,lnhl) + an(ix,jy,kz,lzhl) = 36.*g1hl*dn(ix,kz)**2*q**2/(pi**2*xdnhl**2*nrx) ! *dninv + ENDIF + ENDIF + + +! ENDIF + +! spechum = qv_mp/(1.0_kind_phys+qv_mp) +! IF ( convertdry ) THEN +! qc = qc_mp/(1.0_kind_phys+qv_mp) + mixconvqv = 1 + IF ( present( spechum ) ) THEN ! convert back to "dry+vapor" mixing ratios + !an(ix,jy,kz,lv) = spechum(ix,kz)/(1.0d0 - spechum(ix,kz)) + mixconvqv = 1.0d0/(1.0d0 + an(ix,jy,kz,lv)) + spechum(ix,kz) = an(ix,jy,kz,lv)*mixconvqv + ELSE + mixconvqv = 1.0d0 + ENDIF + + IF ( present( qv ) ) qv(ix,kz) = an(ix,jy,kz,lv) + IF ( present( qcw ) ) qcw(ix,kz) = an(ix,jy,kz,lc)*mixconvqv + IF ( present( qrw ) ) qrw(ix,kz) = an(ix,jy,kz,lr)*mixconvqv + IF ( present( qci ) ) qci(ix,kz) = an(ix,jy,kz,li)*mixconvqv + IF ( present( qsw ) ) THEN + qsw(ix,kz) = an(ix,jy,kz,ls)*mixconvqv +! qsmax3 = Max( qsmax3, qsw(ix,kz) ) +! qsmax4 = Max( qsmax4, an(ix,jy,kz,ls) ) + ENDIF + IF ( present( qhw ) ) qhw(ix,kz) = an(ix,jy,kz,lh)*mixconvqv + IF ( lhl > 1 .and. present( qhl ) ) qhl(ix,kz) = an(ix,jy,kz,lhl)*mixconvqv + IF ( present( ccw ) ) ccw(ix,kz) = an(ix,jy,kz,lnc)*mixconvqv*dninv + IF ( present( crw ) ) crw(ix,kz) = an(ix,jy,kz,lnr)*mixconvqv*dninv + IF ( present( cci ) ) cci(ix,kz) = an(ix,jy,kz,lni)*mixconvqv*dninv + IF ( present( csw ) ) csw(ix,kz) = an(ix,jy,kz,lns)*mixconvqv*dninv + IF ( present( chw ) ) chw(ix,kz) = an(ix,jy,kz,lnh)*mixconvqv*dninv + IF ( lhl > 1 .and. present( chl ) ) chl(ix,kz) = an(ix,jy,kz,lnhl)*mixconvqv*dninv + IF ( lvh > 1 .and. present( vhw ) ) vhw(ix,kz) = an(ix,jy,kz,lvh)*mixconvqv + IF ( lvhl > 1 .and. present( vhl ) ) vhl(ix,kz) = an(ix,jy,kz,lvhl)*mixconvqv + IF ( lccn > 1 .and. present( cccn ) ) cccn(ix,kz) = an(ix,jy,kz,lccn)*mixconvqv*dninv + IF ( lccna > 1 .and. present( cccna ) ) cccna(ix,kz) = an(ix,jy,kz,lccna)*mixconvqv + + + ENDDO ! ix + ENDDO ! kz +! ELSE +! write(0,*) 'calcnfromq: lv = ',lv,lc,lr,li,ls,lh,lvh,lhl,lccn,lccna +! write(0,*) 'calcnfromq: nx,ny,nz,na = ',nx,ny,nz,na +! +! ENDIF + +! IF ( present( qsw ) ) THEN +! write(0,*) 'calcnfromq: qsmax = ',qsmax,qsmax2,qsmax3,qsmax4 +! ENDIF + + RETURN + END subroutine calcnfromq ! ############################################################################## @@ -4661,6 +5646,9 @@ subroutine calcnfromcuten(nx,ny,nz,an,anold,na,nor,norz,dn) anold(ix,jy,kz,lnr) = anold(ix,jy,kz,lnr) + an(ix,jy,kz,lr)/xmass ENDIF + IF ( lzr > 1 ) THEN ! set reflectivity moment + an(ix,jy,kz,lzr) = 36.*g1r*dn(ix,kz)**2*q**2/(pi**2*xdnr**2*nrx) ! *dninv + ENDIF ENDIF ENDIF @@ -4711,6 +5699,9 @@ subroutine calcnfromcuten(nx,ny,nz,an,anold,na,nor,norz,dn) ! ! an(ix,jy,kz,lnh) = nrx ! *dninv ! convert to number mixing ratio ! +! IF ( lzh > 1 ) THEN ! set reflectivity moment +! an(ix,jy,kz,lzh) = 36.*g1h*dn(ix,kz)**2*q**2/(pi**2*xdnh**2*nrx) ! *dninv +! ENDIF ! ENDIF ! ENDIF ! @@ -4734,6 +5725,9 @@ subroutine calcnfromcuten(nx,ny,nz,an,anold,na,nor,norz,dn) ! ! an(ix,jy,kz,lnhl) = nrx ! *dninv ! convert to number mixing ratio ! +! IF ( lzhl > 1 ) THEN ! set reflectivity moment +! an(ix,jy,kz,lzhl) = 36.*g1hl*dn(ix,kz)**2*q**2/(pi**2*xdnhl**2*nrx) ! *dninv +! ENDIF ! ENDIF ! ENDIF @@ -4750,7 +5744,9 @@ END subroutine calcnfromcuten SUBROUTINE calc_eff_radius & & (nx,ny,nz,na,jyslab & & ,nor,norz & - & ,t1,t2,t3 & + & ,t1,t2,t3,t4,t5,t6, f_t4, f_t5,f_t6 & + & ,qcw,qci,qsw,qrw & + & ,ccw,cci,csw,crw & & ,an,dn ) implicit none @@ -4766,18 +5762,19 @@ SUBROUTINE calc_eff_radius & ! external temporary arrays ! - real t1(-nor+1:nx+nor,-nor+1:ny+nor,-norz+1:nz+norz) - real t2(-nor+1:nx+nor,-nor+1:ny+nor,-norz+1:nz+norz) - real t3(-nor+1:nx+nor,-nor+1:ny+nor,-norz+1:nz+norz) - + real,optional :: t1(-nor+1:nx+nor,-nor+1:ny+nor,-norz+1:nz+norz) + real,optional :: t2(-nor+1:nx+nor,-nor+1:ny+nor,-norz+1:nz+norz) + real,optional :: t3(-nor+1:nx+nor,-nor+1:ny+nor,-norz+1:nz+norz) + real,optional :: t4(-nor+1:nx+nor,-nor+1:ny+nor,-norz+1:nz+norz) + real,optional :: t5(-nor+1:nx+nor,-nor+1:ny+nor,-norz+1:nz+norz) + real,optional :: t6(-nor+1:nx+nor,-nor+1:ny+nor,-norz+1:nz+norz) + logical, optional :: f_t4, f_t5, f_t6 ! flags to fill t4/t5/t6 for rain/graupel/hail - real an(-nor+1:nx+nor,-nor+1:ny+nor,-norz+1:nz+norz,na) + real, optional :: an(-nor+1:nx+nor,-nor+1:ny+nor,-norz+1:nz+norz,na) real dn(-nor+1:nx+nor,-nor+1:ny+nor,-norz+1:nz+norz) - - + real, optional, dimension(nx,nz) :: qcw,qci,qsw,qrw,ccw,cci,csw,crw - ! local real pb(-norz+ng1:nz+norz) @@ -4809,8 +5806,13 @@ SUBROUTINE calc_eff_radius & real :: alpha(ngs,lc:lhab) real :: gamc1,gamc2,gami1,gami2,gams1,gams2, factor_c, factor_i, factor_s - real :: lam_c, lam_i, lam_s + real :: lam_c, lam_i, lam_s, lam_r, lam_h, lam_hl + real :: gamr1,gamr2,gamh1,gamh2,factor_r,factor_h,factor_hl integer :: il + real :: hwdn,hldn + double precision :: numh, numhl,denomh,denomhl + + logical :: flag_t4, flag_t5, flag_t6 ! ------------------------------------------------------------------------------- @@ -4825,6 +5827,28 @@ SUBROUTINE calc_eff_radius & nzend = nz kzbeg = 1 nzbeg = 1 + + flag_t4 = .false. + flag_t5 = .false. + flag_t6 = .false. + + IF ( present(f_t4) ) THEN + IF ( present(f_t4) ) THEN + flag_t4 = f_t4 + ENDIF + ENDIF + + IF ( present(f_t5) ) THEN + IF ( present(f_t5) ) THEN + flag_t5 = f_t5 + ENDIF + ENDIF + + IF ( present(f_t6) ) THEN + IF ( present(f_t6) ) THEN + flag_t6 = f_t6 + ENDIF + ENDIF jy = 1 pb(:) = 0.0 @@ -4836,11 +5860,24 @@ SUBROUTINE calc_eff_radius & gami2 = 1. ! Gamma[1 + alphac] gams1 = Gamma_sp(2. + snu) gams2 = Gamma_sp(1. + snu) + gamr1 = Gamma_sp(2. + rnu) + gamr2 = Gamma_sp(1. + rnu) factor_c = (1. + cnu)*Gamma_sp(1. + cnu)/Gamma_sp(5./3. + cnu) factor_i = (1. + cinu)*Gamma_sp(1. + cinu)/Gamma_sp(5./3. + cinu) factor_s = (1. + snu)*Gamma_sp(1. + snu)/Gamma_sp(5./3. + snu) + IF ( present(t4) ) THEN + IF ( imurain == 3 ) THEN + factor_r = (1. + rnu)*Gamma_sp(1. + rnu)/Gamma_sp(5./3. + rnu) + ELSE + factor_r = ((Pi*(alphar+3.)*(alphar+1.)*(alphar+1.))/6.)**(1./3.) + ENDIF + ENDIF + + factor_h = ((Pi*(alphah+3.)*(alphah+1.)*(alphah+1.))/6.)**(1./3.) + factor_hl = ((Pi*(alphahl+3.)*(alphahl+1.)*(alphahl+1.))/6.)**(1./3.) + ! ! jy = 1 ! working on a 2d slab !! VERY IMPORTANT: SET jgs = jy @@ -4852,29 +5889,155 @@ SUBROUTINE calc_eff_radius & DO ix = 1,nx ! ixcol rho0(mgs) = dn(ix,jy,kz) - DO il = lc,ls + IF ( present( an ) ) THEN + DO il = lc,lhab qx(mgs,il) = max(an(ix,jy,kz,il), 0.0) cx(mgs,il) = max(an(ix,jy,kz,ln(il)), 0.0) ENDDO + ELSE + qx(mgs,:) = 0.0 + cx(mgs,:) = 0.0 + IF ( present(qcw) ) qx(mgs,lc) = qcw(ix,kz) + IF ( present(qci) ) qx(mgs,li) = qci(ix,kz) + IF ( present(qsw) ) qx(mgs,ls) = qsw(ix,kz) + IF ( present(qrw) ) qx(mgs,lr) = qrw(ix,kz) + IF ( present(ccw) ) cx(mgs,lc) = ccw(ix,kz)*rho0(mgs) + IF ( present(cci) ) cx(mgs,li) = cci(ix,kz)*rho0(mgs) + IF ( present(csw) ) cx(mgs,ls) = csw(ix,kz)*rho0(mgs) + IF ( present(crw) ) cx(mgs,lr) = crw(ix,kz)*rho0(mgs) - IF ( qx(mgs,lc) > qxmin(lc) ) THEN + ENDIF + + IF ( present( t1 ) .and. qx(mgs,lc) > qxmin(lc) .and. cx(mgs,lc) > cxmin ) THEN ! Lambda for cloud droplets lam_c = ((cx(mgs,lc)*(Pi/6.)*xdn0(lc)*Gamc1)/(qx(mgs,lc)*rho0(mgs)*Gamc2))**(1./3.) t1(ix,jy,kz) = 0.5*factor_c/lam_c ENDIF - IF ( qx(mgs,li) > qxmin(li) ) THEN + IF ( present( t2 ) .and. qx(mgs,li) > qxmin(li) .and. cx(mgs,li) > cxmin ) THEN ! Lambda for cloud ice lam_i = ((cx(mgs,li)*(Pi/6.)*xdn0(li)*Gami1)/(qx(mgs,li)*rho0(mgs)*Gami2))**(1./3.) t2(ix,jy,kz) = 0.5*factor_i/lam_i ENDIF - IF ( qx(mgs,ls) > qxmin(ls) ) THEN + IF ( present( t3 ) .and. qx(mgs,ls) > qxmin(ls) .and. cx(mgs,ls) > cxmin ) THEN ! Lambda for snow lam_s = ((cx(mgs,ls)*(Pi/6.)*xdn0(ls)*Gams1)/(qx(mgs,ls)*rho0(mgs)*Gams2))**(1./3.) t3(ix,jy,kz) = 0.5*factor_s/lam_s ENDIF + IF ( present( t4 ) .and.( ( present(qrw) .and. present(crw) ) .or. flag_t4 ) ) THEN + IF ( qx(mgs,lr) > Max(1.e-8,qxmin(lr)) .and. cx(mgs,lr) > cxmin ) THEN + IF ( imurain == 1 ) THEN ! gamma-diameter +! Lambda for rain + lam_r = factor_r *((xdn0(lr)*cx(mgs,lr))/(qx(mgs,lr)*rho0(mgs)))**(1./3.) + t4(ix,jy,kz) = 0.5*(alphar+3.)/lam_r + ELSE ! gamma-volume +! Lambda for rain + lam_r = ((cx(mgs,lr)*(Pi/6.)*xdn0(lr)*Gamr1)/(qx(mgs,lr)*rho0(mgs)*Gamr2))**(1./3.) + t4(ix,jy,kz) = 0.5*factor_r/lam_r + ENDIF + ENDIF + ENDIF + + IF ( present(t5) .and. flag_t5 ) THEN + + ! first: case when hail is off + + IF ( lhl < 1 .or. flag_t6 ) THEN + ! graupel only + IF ( qx(mgs,lh) > Max(1.e-8,qxmin(lh)) ) THEN + ! Lambda for graupel + hwdn = xdn0(lh) + IF ( lvh > 1 ) THEN ! variable density + IF ( an(ix,jy,kz,lvh) > 1.e-30 ) THEN + hwdn = rho0(mgs)*qx(mgs,lh)/an(ix,jy,kz,lvh) + ENDIF + ENDIF + + lam_h = factor_h *((hwdn*cx(mgs,lh))/(qx(mgs,lh)*rho0(mgs)))**(1./3.) + t5(ix,jy,kz) = 0.5*(alphah+3.)/lam_h + ENDIF + + ELSE ! have hail, too, but do not have t6 array + + IF ( qx(mgs,lh) > Max(1.e-8,qxmin(lh)) .and. qx(mgs,lhl) < Max(1.e-8,qxmin(lhl)) ) THEN +! Lambda for graupel + hwdn = xdn0(lh) + IF ( lvh > 1 ) THEN ! variable density + IF ( an(ix,jy,kz,lvh) > 1.e-30 ) THEN + hwdn = rho0(mgs)*qx(mgs,lh)/an(ix,jy,kz,lvh) + ENDIF + ENDIF + + lam_h = factor_h *((hwdn*cx(mgs,lh))/(qx(mgs,lh)*rho0(mgs)))**(1./3.) + t5(ix,jy,kz) = 0.5*(alphah+3.)/lam_h + + ELSEIF ( qx(mgs,lh) < Max(1.e-8,qxmin(lh)) .and. qx(mgs,lhl) > Max(1.e-8,qxmin(lhl)) ) THEN +! Lambda for hail + hldn = xdn0(lhl) + IF ( lvhl > 1 ) THEN ! variable density + IF ( an(ix,jy,kz,lvhl) > 1.e-30 ) THEN + hldn = rho0(mgs)*qx(mgs,lhl)/an(ix,jy,kz,lvhl) + ENDIF + ENDIF + + lam_hl = factor_hl *((hldn*cx(mgs,lhl))/(qx(mgs,lhl)*rho0(mgs)))**(1./3.) + t5(ix,jy,kz) = 0.5*(alphahl+3.)/lam_hl + + ELSEIF ( qx(mgs,lh) > Max(1.e-8,qxmin(lh)) .and. qx(mgs,lhl) > Max(1.e-8,qxmin(lhl)) ) THEN +! r_eff graupel and hail combined + + hldn = xdn0(lhl) + IF ( lvhl > 1 ) THEN ! variable density + IF ( an(ix,jy,kz,lvhl) > 1.e-30 ) THEN + hldn = rho0(mgs)*qx(mgs,lhl)/an(ix,jy,kz,lvhl) + ENDIF + ENDIF + + hwdn = xdn0(lh) + IF ( lvh > 1 ) THEN ! variable density + IF ( an(ix,jy,kz,lvh) > 1.e-30 ) THEN + hwdn = rho0(mgs)*qx(mgs,lh)/an(ix,jy,kz,lvh) + ENDIF + ENDIF + + lam_h = factor_h *((hwdn*cx(mgs,lh))/(qx(mgs,lh)*rho0(mgs)))**(1./3.) + lam_hl = factor_hl *((hldn*cx(mgs,lhl))/(qx(mgs,lhl)*rho0(mgs)))**(1./3.) + + numh = cx(mgs,lh)*(alphah+3.)*(alphah+2.)*(alphah+1.)/lam_h**3 + numhl = cx(mgs,lhl)*(alphahl+3.)*(alphahl+2.)*(alphahl+1.)/lam_hl**3 + + denomh = cx(mgs,lh)*(alphah+2.)*(alphah+1.)/lam_h**2 + denomhl = cx(mgs,lhl)*(alphahl+2.)*(alphahl+1.)/lam_hl**2 + + t5(ix,jy,kz) = 0.5*(numh + numhl)/(denomh + denomhl) + + + ENDIF ! no t6 array + + ENDIF ! lhl + + ENDIF ! flag_t5 + + IF ( present(t6) .and. flag_t6 .and. lhl > 1 ) THEN + + IF ( qx(mgs,lhl) > Max(1.e-8,qxmin(lhl)) ) THEN +! Lambda for hail + hldn = xdn0(lhl) + IF ( lvhl > 1 ) THEN ! variable density + IF ( an(ix,jy,kz,lvhl) > 1.e-30 ) THEN + hldn = rho0(mgs)*qx(mgs,lhl)/an(ix,jy,kz,lvhl) + ENDIF + ENDIF + + lam_hl = factor_hl *((hldn*cx(mgs,lhl))/(qx(mgs,lhl)*rho0(mgs)))**(1./3.) + t6(ix,jy,kz) = 0.5*(alphahl+3.)/lam_hl + + ENDIF + + ENDIF ! t6 + ENDDO ! ix ENDDO ! kz @@ -6172,7 +7335,9 @@ SUBROUTINE setvtz(ngscnt,qx,qxmin,qxw,cx,rho0,rhovt,xdia,cno,cnostmp, & ! DO il = lc,lhab ! IF ( il .ne. lr ) THEN DO mgs = 1,ngscnt - vtxbar(mgs,lc,2) = vtxbar(mgs,lc,1) + IF ( ildo == 0 .or. ildo == lc ) THEN + vtxbar(mgs,lc,2) = vtxbar(mgs,lc,1) + ENDIF IF ( li .gt. 1 ) THEN ! vtxbar(mgs,li,2) = rhovt(mgs)*49420.*1.25447*xdia(mgs,li,1)**(1.415) ! n-wgt (Ferrier 94) ! vtxbar(mgs,li,2) = vtxbar(mgs,li,1) @@ -6242,6 +7407,9 @@ SUBROUTINE setvtz(ngscnt,qx,qxmin,qxw,cx,rho0,rhovt,xdia,cno,cnostmp, & ELSEIF ( icdxhl .eq. 6 ) THEN ! Milbrandt and Morrison (2013) aax = axx(mgs,lhl) bbx = bxx(mgs,lhl) + ELSEIF ( icdxhl <= 0 ) THEN ! + aax = ax(lhl) + bbx = bx(lhl) ENDIF ENDIF ! } @@ -6285,7 +7453,6 @@ SUBROUTINE setvtz(ngscnt,qx,qxmin,qxw,cx,rho0,rhovt,xdia,cno,cnostmp, & aax = ax(il) vtxbar(mgs,il,2) = rhovt(mgs)*ax(il)*(xdia(mgs,il,1)**bx(il)*x)/y ENDIF - ! vtxbar(mgs,il,2) = & ! & rhovt(mgs)*(xdn(mgs,il)/400.)*(75.715*xdia(mgs,il,1)**0.6* & ! & x)/y @@ -6307,7 +7474,7 @@ SUBROUTINE setvtz(ngscnt,qx,qxmin,qxw,cx,rho0,rhovt,xdia,cno,cnostmp, & vtxbar(mgs,il,3) = rhovt(mgs)* & & (aax*(xdia(mgs,il,1) )**bbx * & & x)/y -! & Gamma(7.0 + alpha(mgs,il) + bbx))/Gamma(7. + alpha(mgs,il)) +! & Gamma(7.0 + alpha(mgs,il) + bbx)/Gamma(7. + alpha(mgs,il)) IF ( .not. (vtxbar(mgs,il,1) > -1. .and. vtxbar(mgs,il,1) < 200. ) .or. & .not. (vtxbar(mgs,il,3) > -1. .and. vtxbar(mgs,il,3) < 200. ) ) THEN write(0,*) 'Setvtz: problem with vtxbar1/3: ',il,vtxbar(mgs,il,1),vtxbar(mgs,il,3),aax,bbx,x,y @@ -6549,7 +7716,11 @@ subroutine ziegfall1d(nx,ny,nz,nor,norz,na,dtp,jgs,ixcol, & real vtmax real xvbarmax - + + real, parameter :: c1r=19.0, c2r=0.6, c3r=1.8, c4r=17.0 ! rain + real, parameter :: c1h=5.5, c2h=0.7, c3h=4.5, c4h=8.5 ! Graupel + real, parameter :: c1hl=3.7, c2hl=0.3, c3hl=9.0, c4hl=6.5, c5hl=1.0, c6hl=6.5 ! Hail + integer l1, l2 double precision :: dpt1, dpt2 @@ -6825,10 +7996,466 @@ subroutine ziegfall1d(nx,ny,nz,nor,norz,na,dtp,jgs,ixcol, & ELSEIF ( imurain == 3 ) THEN alpha(:,lr) = xnu(lr) ENDIF + + + IF ( ipconc == 5 .and. imydiagalpha > 0 ) THEN + DO mgs = 1,ngscnt + IF ( qx(mgs,lr) .gt. qxmin(lr) .and. cx(mgs,lr) > cxmin ) THEN + xv(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(xdn(mgs,lr)*cx(mgs,lr)) ! + xdia(mgs,lr,3) = (xv(mgs,lr)*6.0*cwc1)**(1./3.) + alpha(mgs,lr) = Min(alphamax, c1r*tanh(c2r*(xdia(mgs,lr,3)*1000. - c3r)) + c4r) + ENDIF + IF ( qx(mgs,lh) .gt. qxmin(lh) .and. cx(mgs,lh) > cxmin ) THEN + xv(mgs,lh) = rho0(mgs)*qx(mgs,lh)/(xdn(mgs,lh)*cx(mgs,lh)) ! + xdia(mgs,lh,3) = (xv(mgs,lh)*6.*piinv)**(1./3.) ! mwfac*xdia(mgs,lh,1) ! (xv(mgs,lh)*cwc0*6.0)**(1./3.) + alpha(mgs,lh) = Min(alphamax, c1h*tanh(c2h*(xdia(mgs,lh,3)*1000. - c3h)) + c4h) + ENDIF +! alpha(:,lr) = 0. ! 10. +! alpha(:,lh) = 0. ! 10. + IF ( lhl > 0 ) THEN + IF ( qx(mgs,lhl) .gt. qxmin(lhl) .and. cx(mgs,lhl) > cxmin ) THEN + xv(mgs,lhl) = rho0(mgs)*qx(mgs,lhl)/(xdn(mgs,lhl)*cx(mgs,lhl)) ! + xdia(mgs,lhl,3) = (xv(mgs,lhl)*6.*piinv)**(1./3.) + IF ( xdia(mgs,lhl,3) < 0.008 ) THEN + alpha(mgs,lhl) = Min(alphamax, c1hl*tanh(c2hl*(xdia(mgs,lhl,3)*1000. - c3hl)) + c4hl) + ELSE + alpha(mgs,lhl) = Min(alphamax, c5hl*xdia(mgs,lhl,3)*1000. + c6hl) + ENDIF + ENDIF + ENDIF + ENDDO + ENDIF + + +! +! Set 6th moments +! + IF ( ipconc .ge. 6 .or. lzr > 1) THEN + + zx(:,:) = 0.0 + +! DO il = lr,lhab + DO il = l1,l2 + + IF ( lz(il) .ge. 1 ) THEN + + DO mgs = 1,ngscnt + zx(mgs,il) = Max(an(igs(mgs),jy,kgs(mgs),lz(il)), 0.0) + ENDDO + + + ENDIF + + ENDDO + + ENDIF + + + + +! Find shape parameter rain + + + IF ( lz(lr) > 1 .and. (ildo == 0 .or. ildo == lr ) .and. imurain == 3 ) THEN ! { RAIN SHAPE PARAM + il = lr + DO mgs = 1,ngscnt + + IF ( iresetmoments == 1 .or. iresetmoments == il ) THEN +! IF ( .false. .and. zx(mgs,lr) <= zxmin ) THEN + IF ( zx(mgs,lr) <= zxmin ) THEN + qx(mgs,lr) = 0.0 + cx(mgs,lr) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),lr) + an(igs(mgs),jgs,kgs(mgs),lr) = qx(mgs,lr) + an(igs(mgs),jgs,kgs(mgs),ln(lr)) = cx(mgs,lr) +! ELSEIF ( zx(mgs,lr) <= 0.0 .and. cx(mgs,lr) > 0.0 .and. qx(mgs,il) .gt. qxmin(il)) THEN +! write(91,*) 'ZF: overdepletion of Zr: z,c,q = ',zx(mgs,il),cx(mgs,il),qx(mgs,il) + ELSEIF ( cx(mgs,lr) <= cxmin ) THEN + zx(mgs,lr) = 0.0 + qx(mgs,lr) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),lr) + an(igs(mgs),jgs,kgs(mgs),lr) = qx(mgs,lr) + an(igs(mgs),jgs,kgs(mgs),lz(lr)) = zx(mgs,lr) + ENDIF + ENDIF + + + + IF ( qx(mgs,lr) .gt. qxmin(lr) ) THEN + + xv(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(xdn(mgs,lr)*Max(1.0e-11,cx(mgs,lr))) + IF ( xv(mgs,lr) .gt. xvmx(lr) ) THEN +! tmp = cx(mgs,lr) +! xv(mgs,lr) = xvmx(lr) +! cx(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(xvmx(lr)*xdn(mgs,lr)) +! an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) +! IF ( tmp < cx(mgs,il) ) THEN ! breakup +! g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) +!! zx(mgs,lr) = zx(mgs,lr) + g1*(rho0(mgs)/(1000.))**2*( (qx(mgs,il)/tmp)**2 * (tmp-cx(mgs,il)) ) +!! an(igs(mgs),jgs,kgs(mgs),lz(lr)) = zx(mgs,lr) +! ENDIF + ELSEIF ( xv(mgs,lr) .lt. xvmn(lr) ) THEN + xv(mgs,lr) = xvmn(lr) + cx(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(xvmn(lr)*xdn(mgs,lr)) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + ENDIF + + IF ( zx(mgs,il) > 0.0 .and. cx(mgs,il) <= 0.0 ) THEN +! have mass and reflectivity but no concentration, so set concentration, using default alpha + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + z = zx(mgs,il) + qr = qx(mgs,il) + + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/(z*1000.*1000) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + + ELSEIF ( zx(mgs,il) <= zxmin .and. cx(mgs,il) > cxmin ) THEN +! have mass and concentration but no reflectivity, so set reflectivity, using default alpha + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + chw = cx(mgs,il) + qr = qx(mgs,il) + +! xv(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(1000.*Max(1.0e-9,cx(mgs,lr))) +! vr = xv(mgs,lr) + +! z = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/((alpha(mgs,lr)+1.0)*pi**2) +! zx(mgs,il) = z +! an(igs(mgs),jy,kgs(mgs),lz(il)) = z + + zx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/(xdn(mgs,lr)**2*chw) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + ELSEIF ( zx(mgs,il) <= zxmin .and. cx(mgs,il) <= 0.0 ) THEN +! How did this happen? + ! set values according to dBZ of -10, or Z = 0.1 +! write(91,*) 'alpha = ',alpha(mgs,il) + IF ( qx(mgs,il) < 1.e-8 ) THEN + qx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + ELSE +! 0.1 = 1.e18*0.224*an(ix,jy,kz,lzh)*(hwdn/rwdn)**2 + zx(mgs,il) = 1.e-19/0.224*(xdn0(lr)/xdn0(il))**2 + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + z = zx(mgs,il) + qr = qx(mgs,il) + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/(z*1000.*1000) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + ENDIF + ENDIF + + IF ( zx(mgs,lr) > 0.0 ) THEN + xv(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(1000.*Max(1.0e-9,cx(mgs,lr))) + vr = xv(mgs,lr) +! z = 36.*(alpha(kz)+2.0)*a(ix,jy,kz,lnr)*vr**2/((alpha(kz)+1.0)*pi**2) + qr = qx(mgs,lr) + nrx = cx(mgs,lr) + z = zx(mgs,lr) + +! xv = (db(1,kz)*a(1,1,kz,lr))**2/(a(1,1,kz,lnr)) +! rd = z*(pi/6.*1000.)**2/xv + +! determine shape parameter alpha by iteration + IF ( z .gt. 0.0 ) THEN +! alpha(mgs,lr) = 3. + alp = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/(z*pi**2) - 1. + DO i = 1,20 +! IF ( 100.*Abs(alp - alpha(mgs,lr))/Abs(alpha(mgs,lr)) .lt. 1. ) EXIT + IF ( Abs(alp - alpha(mgs,lr)) .lt. 0.01 ) EXIT + alpha(mgs,lr) = Max( rnumin, Min( rnumax, alp ) ) + alp = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/(z*pi**2) - 1. +! write(0,*) 'i,alp = ',i,alp + alp = Max( rnumin, Min( rnumax, alp ) ) + ENDDO +! write(0,*) 'kz, alp, alpha(kz) = ',kz,alp,alpha(mgs,lr),qr*1000,z*1.e18,vr,nrx + + +! check for artificial breakup (rain larger than allowed max size) + IF ( xv(mgs,il) .gt. xvmx(il) ) THEN + tmp = cx(mgs,il) + xv(mgs,il) = Min( xvmx(il), Max( xvmn(il),xv(mgs,il) ) ) + xmas(mgs,il) = xv(mgs,il)*xdn(mgs,il) + cx(mgs,il) = rho0(mgs)*qx(mgs,il)/(xmas(mgs,il)) + IF ( tmp < cx(mgs,il) ) THEN ! breakup + + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + zx(mgs,il) = zx(mgs,il) + g1*(rho0(mgs)/xdn(mgs,il))**2*( (qx(mgs,il)/tmp)**2 * (tmp-cx(mgs,il)) ) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + vr = xv(mgs,lr) + qr = qx(mgs,lr) + nrx = cx(mgs,lr) + z = zx(mgs,lr) + + +! determine shape parameter alpha by iteration + alp = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/(z*pi**2) - 1. + DO i = 1,20 + IF ( Abs(alp - alpha(mgs,lr)) .lt. 0.01 ) EXIT + alpha(mgs,lr) = Max( rnumin, Min( rnumax, alp ) ) + alp = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/(z*pi**2) - 1. + alp = Max( rnumin, Min( rnumax, alp ) ) + ENDDO + + + ENDIF + ENDIF + +! +! Check whether the shape parameter is at or less than the minimum, and if it is, reset the +! concentration or reflectivity to match (prevents reflectivity from being out of balance with Q and N) +! +! IF ( alpha(mgs,il) <= rnumin .or. alp == rnumin .or. alp == rnumax ) THEN + IF ( .true. .and. (alpha(mgs,il) <= rnumin .or. alp == rnumin .or. alp == rnumax) ) THEN + + IF ( rescale_high_alpha .and. alp >= rnumax - 0.01 ) THEN ! reset c at high alpha to prevent growth in Z + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/z*(1./(xdn(mgs,il)))**2 + an(igs(mgs),jy,kgs(mgs),ln(il)) = cx(mgs,il) + + ELSEIF ( rescale_low_alphar .and. alp <= rnumin ) THEN + + z = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/((alpha(mgs,lr)+1.0)*pi**2) + zx(mgs,il) = z + an(igs(mgs),jy,kgs(mgs),lz(il)) = z + + ENDIF + ENDIF + + ENDIF + ENDIF + + ELSE + + zx(mgs,lr) = 0.0 + cx(mgs,lr) = 0.0 + an(igs(mgs),jgs,kgs(mgs),ln(lr)) = cx(mgs,lr) + an(igs(mgs),jgs,kgs(mgs),lz(lr)) = zx(mgs,lr) + + ENDIF + + ENDDO + ENDIF ! } + + + IF ( ipconc .ge. 6 ) THEN + +! Find shape parameters for graupel,hail + + DO il = lr,lhab + + IF ( lz(il) .gt. 1 .and. (ildo == 0 .or. ildo == il ) .and. ( .not. ( il == lr .and. imurain == 3 )) ) THEN + + DO mgs = 1,ngscnt + + IF ( iresetmoments == 1 .or. iresetmoments == il .or. iresetmoments == -1 ) THEN + IF ( zx(mgs,il) <= zxmin ) THEN ! .and. qx(mgs,il) > 0.05e-3 ) THEN + qx(mgs,il) = 0.0 + cx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + ELSEIF ( iresetmoments == -1 .and. qx(mgs,il) < qxmin(il) ) THEN + zx(mgs,il) = 0.0 + cx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + + qx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + ELSEIF ( cx(mgs,il) <= cxmin .and. iresetmoments /= -1 ) THEN ! .and. qx(mgs,il) > 0.05e-3 ) THEN +!! write(91,*) 'cx=0; qx,zx = ',1000.*qx(mgs,il),1.e18*zx(mgs,il) + zx(mgs,il) = 0.0 + qx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + ENDIF + ENDIF + IF ( zx(mgs,il) <= zxmin .and. cx(mgs,il) <= cxmin ) THEN + zx(mgs,il) = 0.0 + cx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + qx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + ENDIF + + IF ( qx(mgs,il) .gt. qxmin(il) ) THEN + + xv(mgs,il) = rho0(mgs)*qx(mgs,il)/(xdn(mgs,il)*Max(1.0e-9,cx(mgs,il))) + xmas(mgs,il) = xv(mgs,il)*xdn(mgs,il) + + IF ( xv(mgs,il) .lt. xvmn(il) ) THEN +! tmp = cx(mgs,il) + xv(mgs,il) = Min( xvmx(il), Max( xvmn(il),xv(mgs,il) ) ) + xmas(mgs,il) = xv(mgs,il)*xdn(mgs,il) + cx(mgs,il) = rho0(mgs)*qx(mgs,il)/(xmas(mgs,il)) +! IF ( tmp < cx(mgs,il) ) THEN ! breakup +! g1 = 36.*(6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & +! & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))*pi**2) +! zx(mgs,il) = zx(mgs,il) + g1*(rho0(mgs)/xdn(mgs,il))**2*( (qx(mgs,il)/tmp)**2 * (tmp-cx(mgs,il)) ) +! an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) +! +! ENDIF + ENDIF + + IF ( zx(mgs,il) > 0.0 .and. cx(mgs,il) <= 0.0 ) THEN +! have mass and reflectivity but no concentration, so set concentration, using default alpha + g1 = (6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))) + z = zx(mgs,il) + qr = qx(mgs,il) + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(6*qr)**2/(z*(pi*xdn(mgs,il))**2) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + + ELSEIF ( zx(mgs,il) <= zxmin .and. cx(mgs,il) > cxmin ) THEN +! have mass and concentration but no reflectivity, so set reflectivity, using default alpha + g1 = (6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))) + chw = cx(mgs,il) + qr = qx(mgs,il) +! zx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/chw + zx(mgs,il) = Min(zxmin*1.1, g1*dn(igs(mgs),jy,kgs(mgs))**2*(6*qr)**2/(chw*(pi*xdn(mgs,il))**2) ) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + ELSEIF ( zx(mgs,il) <= zxmin .and. cx(mgs,il) <= 0.0 ) THEN +! How did this happen? +! write(91,*) 'ziegfall: something screwy with moments: il = ',il +! write(91,*) 'q,n,z = ', 1.e3*qx(mgs,il),cx(mgs,il),zx(mgs,il) +! write(91,*) 'alpha = ',alpha(mgs,il) + + IF ( qx(mgs,il) < 1.e-8 ) THEN + qx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + ELSE +! write(0,*) 'alpha = ',alpha(mgs,il) + ! set values according to dBZ of -10 +! 0.1 = 1.e18*0.224*an(ix,jy,kz,lzh)*(hwdn/rwdn)**2 + zx(mgs,il) = 1.e-19/0.224*(xdn0(lr)/xdn0(il))**2 + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + g1 = (6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))) + z = zx(mgs,il) + qr = qx(mgs,il) + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(6*qr)**2/(z*(pi*xdn(mgs,il))**2) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + ENDIF + ENDIF + ENDIF + + IF ( qx(mgs,il) .gt. qxmin(il) .and. cx(mgs,il) .gt. cxmin ) THEN + chw = cx(mgs,il) + qr = qx(mgs,il) + z = zx(mgs,il) + + IF ( zx(mgs,il) .gt. 0. ) THEN + +! rd = z*(pi/6.*1000.)**2*chw/(0.224*(dn(igs(mgs),jy,kgs(mgs))*qr)**2) + rd = z*(pi/6.*xdn(mgs,il))**2*chw/((dn(igs(mgs),jy,kgs(mgs))*qr)**2) + + alp = (6.+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ & + & ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rd) - 1.0 + DO i = 1,10 + IF ( Abs(alp - alpha(mgs,il)) .lt. 0.01 ) EXIT + alpha(mgs,il) = Max( alphamin, Min( alphamax, alp ) ) + alp = (6.+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ & + & ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rd) - 1.0 +! write(0,*) 'i,alp = ',i,alp + alp = Max( alphamin, Min( alphamax, alp ) ) + ENDDO + + + +! check for artificial breakup (graupel/hail larger than allowed max size) + + IF ( imaxdiaopt == 1 ) THEN + xvbarmax = xvmx(il) + ELSEIF ( imaxdiaopt == 2 ) THEN ! test against maximum mass diameter + xvbarmax = xvmx(il) /((3. + alpha(mgs,il))**3/((3. + alpha(mgs,il))*(2. + alpha(mgs,il))*(1. + alpha(mgs,il)))) + ELSEIF ( imaxdiaopt == 3 ) THEN ! test against mass-weighted diameter + xvbarmax = xvmx(il) /((4. + alpha(mgs,il))**3/((3. + alpha(mgs,il))*(2. + alpha(mgs,il))*(1. + alpha(mgs,il)))) + ENDIF + + IF ( xv(mgs,il) .gt. xvbarmax ) THEN + tmp = cx(mgs,il) + xv(mgs,il) = Min( xvbarmax, Max( xvmn(il),xv(mgs,il) ) ) + xmas(mgs,il) = xv(mgs,il)*xdn(mgs,il) + cx(mgs,il) = rho0(mgs)*qx(mgs,il)/(xmas(mgs,il)) + IF ( tmp < cx(mgs,il) ) THEN ! breakup + g1 = 36.*(6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))*pi**2) + zx(mgs,il) = zx(mgs,il) + g1*(rho0(mgs)/xdn(mgs,il))**2*( (qx(mgs,il)/tmp)**2 * (tmp-cx(mgs,il)) ) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + chw = cx(mgs,il) + qr = qx(mgs,il) + z = zx(mgs,il) + + rd = z*(pi/6.*xdn(mgs,il))**2*chw/((rho0(mgs)*qr)**2) + alp = (6.0+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ & + & ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rd) - 1.0 + DO i = 1,10 + IF ( Abs(alp - alpha(mgs,il)) .lt. 0.01 ) EXIT + alpha(mgs,il) = Max( alphamin, Min( alphamax, alp ) ) + alp = (6.+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ & + & ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rd) - 1.0 + alp = Max( alphamin, Min( alphamax, alp ) ) + ENDDO + + + ENDIF + ENDIF + +! +! Check whether the shape parameter is at or less than the minimum, and if it is, reset the +! concentration or reflectivity to match (prevents reflectivity from being out of balance with Q and N) +! + IF ( (rescale_low_alpha .or. rescale_high_alpha ) .and. & + & ( alpha(mgs,il) <= alphamin .or. alp == alphamin .or. alp == alphamax ) ) THEN + + g1 = (6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))) + IF ( rescale_high_alpha .and. alp >= alphamax - 0.01 ) THEN ! reset c at high alpha to prevent growth in Z + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/z*(6./(pi*xdn(mgs,il)))**2 + an(igs(mgs),jy,kgs(mgs),ln(il)) = cx(mgs,il) + + ELSEIF ( rescale_low_alpha .and. alp <= alphamin .and. .not. (il == lh .and. icvhl2h > 0 ) ) THEN + +!! z1 = g1*dn(igs(mgs),jy,kgs(mgs))**2*( 0.224*qr)*qr/chw + z1 = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/chw + z = z1*(6./(pi*xdn(mgs,il)))**2 + zx(mgs,il) = z + an(igs(mgs),jy,kgs(mgs),lz(il)) = z + ENDIF + ENDIF + ELSE + ENDIF + ENDIF + ENDDO ! mgs + + ENDIF ! lz(il) .gt. 1 + + ENDDO ! il + +! CALL cld_cpu('Z-MOMENT-ZFAll') + + ENDIF + IF ( lzhl > 1 ) THEN + IF ( lhl .gt. 1 ) THEN + + ENDIF + ENDIF @@ -6860,6 +8487,19 @@ subroutine ziegfall1d(nx,ny,nz,nor,norz,na,dtp,jgs,ixcol, & & ( vtxbar(mgs,il,1) .gt. vtxbar(mgs,il,3) .and. vtxbar(mgs,il,3) > 0.0) ) THEN +! IF ( qx(mgs,il) > 1.e-4 .and. & +! & .not. ( il == lr .and. 1.e3*xdia(mgs,il,3) > 5.0 ) ) THEN +! write(0,*) 'infdo,mgs = ',infdo,lzr,mgs +! write(0,*) 'Moment problem with vtxbar for il at i,j,k = ',il,igs(mgs),jy,kgs(mgs) +! write(0,*) 'nx,ny,nz,ng = ',nx,ny,nz,nor +! write(0,*) 'cwmasn,cwmasx = ',cwmasn,cwmasx +! write(0,*) 'vt1,2,3 = ',vtxbar(mgs,il,1),vtxbar(mgs,il,2),vtxbar(mgs,il,3) +! write(0,*) 'q,n,d = ', 1.e3*qx(mgs,il),cx(mgs,il),1.e3*xdia(mgs,il,3) +! IF ( il .ge. lr .and. lz(il) > 1 ) write(0,*) 'z = ', zx(mgs,il) +! IF ( il .ge. lg .or. il == lr ) THEN +! write(0,*) 'alpha = ',alpha(mgs,il) +! ENDIF +! ENDIF vtxbar(mgs,il,1) = Max( vtxbar(mgs,il,1), vtxbar(mgs,il,2) ) vtxbar(mgs,il,3) = Max( vtxbar(mgs,il,3), vtxbar(mgs,il,1) ) @@ -6870,6 +8510,18 @@ subroutine ziegfall1d(nx,ny,nz,nor,norz,na,dtp,jgs,ixcol, & IF ( vtxbar(mgs,il,1) .gt. vtmax .or. vtxbar(mgs,il,2) .gt. vtmax .or. & & vtxbar(mgs,il,3) .gt. vtmax ) THEN +! IF ( ndebugzf >= 0 .and. 1.e3*qx(mgs,il) > 0.1 ) THEN +! write(0,*) 'infdo = ',infdo +! write(0,*) 'Problem with vtxbar for il at i,j,k = ',il,igs(mgs),jy,kgs(mgs) +! write(0,*) 'nx,ny,nz,ng = ',nx,ny,nz,nor +! write(0,*) 'cwmasn,cwmasx = ',cwmasn,cwmasx +! write(0,*) 'vt1,2,3 = ',vtxbar(mgs,il,1),vtxbar(mgs,il,2),vtxbar(mgs,il,3) +! write(0,*) 'q,n,d = ', 1.e3*qx(mgs,il),cx(mgs,il),1.e3*xdia(mgs,il,3) +! IF ( il .ge. lr .and. lz(il) > 1 ) write(0,*) 'z = ', zx(mgs,il) +! IF ( il .ge. lg ) THEN +! write(0,*) 'alpha = ',alpha(mgs,il) +! ENDIF +! ENDIF vtxbar(mgs,il,1) = Min(vtmax,vtxbar(mgs,il,1) ) vtxbar(mgs,il,2) = Min(vtmax,vtxbar(mgs,il,2) ) vtxbar(mgs,il,3) = Min(vtmax,vtxbar(mgs,il,3) ) @@ -7379,6 +9031,8 @@ subroutine radardd02(nx,ny,nz,nor,na,an,temk, & IF ( ipconc .le. 2 ) THEN gtmp(ix,kz) = dadr*an(ix,jy,kz,lr)**(0.25) dtmp(ix,kz) = zrc*gtmp(ix,kz)**7 + ELSEIF ( lzr .gt. 1 ) THEN + dtmp(ix,kz) = 1e18*an(ix,jy,kz,lzr) ELSEIF ( an(ix,jy,kz,lnr) .gt. 1.e-3 ) THEN IF ( imurain == 3 ) THEN vr = db(ix,jy,kz)*an(ix,jy,kz,lr)/(1000.*an(ix,jy,kz,lnr)) @@ -7571,7 +9225,7 @@ subroutine radardd02(nx,ny,nz,nor,na,an,temk, & ELSE ! new form using a mass relationship m = p d^2 (instead of d^3 -- Cox 1988 QJRMS) so that density depends on size ! p = 0.106214 for m = p v^(2/3) - dnsnow = 0.346159*sqrt(an(ix,jy,kz,lns)/(an(ix,jy,kz,ls)*db(ix,jy,kz)) ) + dnsnow = 0.0346159*sqrt(an(ix,jy,kz,lns)/(an(ix,jy,kz,ls)*db(ix,jy,kz)) ) IF ( .true. .or. dnsnow < 900. ) THEN gtmp(ix,kz) = 1.e18*323.3226* 0.106214**2*(ksq*an(ix,jy,kz,ls) + & & (1.-ksq)*qxw)*an(ix,jy,kz,ls)*db(ix,jy,kz)**2*gsnow73/ & @@ -7647,6 +9301,10 @@ subroutine radardd02(nx,ny,nz,nor,na,an,temk, & IF ( izieg .ge. 1 .and. ipconc .ge. 5 ) THEN ltest = .false. + IF ( lzh > 1 ) THEN + IF ( an(ix,jy,kz,lzh) > 0.0 .and. an(ix,jy,kz,lh) > qhmin .and. & + an(ix,jy,kz,lnh) >= cxmin ) ltest = .true. + ENDIF IF ( ltest .or. (an(ix,jy,kz,lh) .ge. qhmin .and. an(ix,jy,kz,lnh) .ge. cxmin )) THEN @@ -7692,6 +9350,9 @@ subroutine radardd02(nx,ny,nz,nor,na,an,temk, & ENDIF IF ( lzh .gt. 1 ) THEN + x = (0.224*qh + 0.776*qxw)/an(ix,jy,kz,lh) ! weighted average of dielectric const + dtmph = 1.e18*x*an(ix,jy,kz,lzh)*(hwdn/rwdn)**2 + dtmp(ix,kz) = dtmp(ix,kz) + dtmph ELSE g1 = (6.0 + alphah)*(5.0 + alphah)*(4.0 + alphah)/((3.0 + alphah)*(2.0 + alphah)*(1.0 + alphah)) ! zx = g1*(db(ix,jy,kz)*an(ix,jy,kz,lh))**2/chw @@ -7764,6 +9425,10 @@ subroutine radardd02(nx,ny,nz,nor,na,an,temk, & IF ( ipconc .ge. 5 ) THEN ltest = .false. + IF ( lzhl > 1 ) THEN + IF ( an(ix,jy,kz,lzhl) > 0.0 .and. an(ix,jy,kz,lhl) > qhlmin .and. & + an(ix,jy,kz,lnhl) > 0.0 ) ltest = .true. + ENDIF IF ( ltest .or. ( an(ix,jy,kz,lhl) .ge. qhlmin .and. an(ix,jy,kz,lnhl) .gt. 0.) ) THEN !{ chl = an(ix,jy,kz,lnhl) @@ -7787,6 +9452,9 @@ subroutine radardd02(nx,ny,nz,nor,na,an,temk, & ENDIF IF ( lzhl .gt. 1 ) THEN !{ + x = (0.224*an(ix,jy,kz,lhl) + 0.776*qxw)/an(ix,jy,kz,lhl) ! weighted average of dielectric const + dtmphl = 1.e18*x*an(ix,jy,kz,lzhl)*(hldn/rwdn)**2 + dtmp(ix,kz) = dtmp(ix,kz) + dtmphl ELSE !} g1 = (6.0 + alphahl)*(5.0 + alphahl)*(4.0 + alphahl)/((3.0 + alphahl)*(2.0 + alphahl)*(1.0 + alphahl)) @@ -7895,8 +9563,8 @@ subroutine radardd02(nx,ny,nz,nor,na,an,temk, & write(0,*) 'dtmpr = ',dtmpr write(0,*) 'gtmp = ',gtmp(ix,kz),dtmp(ix,kz) IF ( .not. (dbz(ix,jy,kz) .gt. -100 .and. dbz(ix,jy,kz) .lt. 200 ) ) THEN - write(0,*) 'dbz out of bounds! STOP!' -! STOP + write(0,*) 'dbz out of bounds!' +! STOP ENDIF ENDIF @@ -7937,6 +9605,8 @@ END subroutine radardd02 ! ##################################################################### ! ! Subroutine for explicit cloud condensation and droplet nucleation +! +! 11/30/2022: Fixed droplet evaporation heating term for CM1 eqtset=2 (was only doing eqtset=1) ! SUBROUTINE NUCOND & & (nx,ny,nz,na,jyslab & @@ -7945,6 +9615,7 @@ SUBROUTINE NUCOND & & ,t0,t9 & & ,an,dn,p2 & & ,pn,w & + & ,ngs & & ,axtra,io_flag & & ,ssfilt,t00,t77,flag_qndrop & & ) @@ -8003,6 +9674,7 @@ SUBROUTINE NUCOND & logical :: io_flag real :: dv + real :: ccnefactwo, sstmp, cn1, cnuctmp ! ! declarations microphysics and for gather/scatter @@ -8011,7 +9683,6 @@ SUBROUTINE NUCOND & real, parameter :: cwmas20 = 1000.*0.523599*(2.*20.e-6)**3 ! mass of 20-micron radius droplet, for sat. adj. integer nxmpb,nzmpb,nxz integer mgs,ngs,numgs,inumgs - parameter (ngs=500) integer ngscnt,igs(ngs),kgs(ngs) integer kgsp(ngs),kgsm(ngs) integer nsvcnt @@ -8030,6 +9701,7 @@ SUBROUTINE NUCOND & real ccnc(ngs), ccna(ngs), cnuc(ngs), cwnccn(ngs) + real :: ccnc_nu(ngs), ccnc_ac(ngs), ccnc_co(ngs) real ccncuf(ngs) real sscb ! 'cloud base' SS threshold parameter ( sscb = 2.0 ) @@ -8042,7 +9714,7 @@ SUBROUTINE NUCOND & integer ifilt ! =1 to filter ssat, =0 to set ssfilt=ssat parameter ( ifilt = 0 ) real temp1,temp2 ! ,ssold - real :: ssmax(ngs) = 0.0 ! maximum SS experienced by a parcel + real :: ssmax(ngs) ! maximum SS experienced by a parcel real ssmx real dnnet,dqnet ! real cnu,rnu,snu,cinu @@ -8160,14 +9832,12 @@ SUBROUTINE NUCOND & real :: cvm,cpm,rmm - real, parameter :: rovcp = rd/cp real, parameter :: cpv = 1885.0 ! specific heat of water vapor at constant pressure integer :: kstag integer :: count - ! ------------------------------------------------------------------------------- itile = nxi jtile = ny @@ -8181,6 +9851,7 @@ SUBROUTINE NUCOND & kzbeg = 1 nzbeg = 1 + IF ( ac_opt > 0 ) ccnefactwo = (1.63e-3/(cck * beta(3./2., cck/2.)))**(1.0/(cck + 2.0)) f5 = 237.3 * 17.27 * 2.5e6 / cp ! combined constants for rain condensation (Soong and Ogura 73) jy = 1 @@ -8264,7 +9935,7 @@ SUBROUTINE NUCOND & if ( temg(1) .lt. tfr ) then end if ! - if ( (temg(1) .gt. tfrh .or. an(ix,jy,kz,lv)/qvs(1) > maxsupersat ) .and. & + if ( (temg(1) .gt. tfrh .or. an(ix,jy,kz,lv)/qvs(1) > maxlowtempss ) .and. & & ( an(ix,jy,kz,lv) .gt. qss(1) .or. & & an(ix,jy,kz,lc) .gt. qxmin(lc) .or. & & ( an(ix,jy,kz,lr) .gt. qxmin(lr) .and. rcond == 2 ) & @@ -8291,6 +9962,7 @@ SUBROUTINE NUCOND & qx(:,:) = 0.0 cx(:,:) = 0.0 + zx(:,:) = 0.0 xv(:,:) = 0.0 xmas(:,:) = 0.0 @@ -8350,6 +10022,7 @@ SUBROUTINE NUCOND & ELSE ! equation set 2 in cm1 tmp = qx(mgs,li)+qx(mgs,ls)+qx(mgs,lh) IF ( lhl > 1 ) tmp = tmp + qx(mgs,lhl) + IF ( lf > 1 ) tmp = tmp + qx(mgs,lf) cvm = cv+cvv*qx(mgs,lv)+cpl*(qx(mgs,lc)+qx(mgs,lr)) & +cpigb*(tmp) cpm = cp+cpv*qx(mgs,lv)+cpl*(qx(mgs,lc)+qx(mgs,lr)) & @@ -8404,12 +10077,16 @@ SUBROUTINE NUCOND & ELSE ssmax(mgs) = 0.0 ENDIF - IF ( lccn .gt. 1 ) THEN - ccnc(mgs) = an(igs(mgs),jy,kgs(mgs),lccn) + IF ( lccn .gt. 1 .and. ac_opt == 0 ) THEN + IF ( lccnuf .gt. 1 .and. i_uf_or_ccn > 0 ) THEN + ccnc(mgs) = an(igs(mgs),jy,kgs(mgs),lccn) + an(igs(mgs),jy,kgs(mgs),lccnuf) + ELSE + ccnc(mgs) = an(igs(mgs),jy,kgs(mgs),lccn) + ENDIF ELSE ccnc(mgs) = cwnccn(mgs) ENDIF - IF ( lccnuf .gt. 1 ) THEN + IF ( lccnuf .gt. 1 .and. i_uf_or_ccn == 0 ) THEN ccncuf(mgs) = an(igs(mgs),jy,kgs(mgs),lccnuf) ELSE ccncuf(mgs) = 0.0 @@ -8464,8 +10141,239 @@ SUBROUTINE NUCOND & ventrxn(:) = ventrn +! Find shape parameter rain -! write(0,*) 'NUCOND: Set ssf variables, ssmxinit =',ssmxinit + IF ( lzr > 1 .and. rcond == 2 ) THEN ! { RAIN SHAPE PARAM + DO mgs = 1,ngscnt + zx(mgs,lr) = Max(an(igs(mgs),jy,kgs(mgs),lzr), 0.0) + ENDDO + +! CALL cld_cpu('Z-MOMENT-1r2') + il = lr + DO mgs = 1,ngscnt + + IF ( zx(mgs,il) <= zxmin ) THEN + qx(mgs,lv) = qx(mgs,lv) + qx(mgs,il) + qx(mgs,il) = 0.0 + cx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + ELSEIF ( cx(mgs,il) <= 0.0 ) THEN + qx(mgs,lv) = qx(mgs,lv) + qx(mgs,il) + zx(mgs,il) = 0.0 + qx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + ENDIF + + IF ( qx(mgs,lr) .gt. qxmin(lr) ) THEN + + xv(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(xdn(mgs,lr)*Max(1.0e-11,cx(mgs,lr))) + IF ( xv(mgs,lr) .gt. xvmx(lr) ) THEN + xv(mgs,lr) = xvmx(lr) + cx(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(xvmx(lr)*xdn(mgs,lr)) + ELSEIF ( xv(mgs,lr) .lt. xvmn(lr) ) THEN + xv(mgs,lr) = xvmn(lr) + cx(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(xvmn(lr)*xdn(mgs,lr)) + ENDIF + + IF ( zx(mgs,il) > 0.0 .and. cx(mgs,il) <= 0.0 ) THEN +! have mass and reflectivity but no concentration, so set concentration, using default alpha + IF ( imurain == 3 ) THEN + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + z1 = zx(mgs,il) + qr = qx(mgs,il) + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/(z1*1000.*1000) + ELSE + g1 = 36.*(6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))*pi**2) + z1 = zx(mgs,il) + qr = qx(mgs,il) + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/(z1*1000.*1000) + + ENDIF +! an(igs(mgs),jgs,kgs(mgs),ln(il)) = zx(mgs,il) + ELSEIF ( zx(mgs,il) <= zxmin .and. cx(mgs,il) > 0.0 ) THEN +! have mass and concentration but no reflectivity, so set reflectivity, using default alpha + IF ( imurain == 3 ) THEN + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + chw = cx(mgs,il) + qr = qx(mgs,il) + zx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/(chw*1000.*1000) + ELSE + g1 = 36.*(6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))*pi**2) + chw = cx(mgs,il) + qr = qx(mgs,il) + zx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/(chw*1000.*1000) + + ENDIF + + ELSEIF ( zx(mgs,il) <= zxmin .and. cx(mgs,il) <= 0.0 ) THEN +! How did this happen? + ! set values according to dBZ of -10, or Z = 0.1 +! 0.1 = 1.e18*0.224*an(ix,jy,kz,lzh)*(hwdn/rwdn)**2 + zx(mgs,il) = 1.e-19/0.224*(xdn0(lr)/xdn0(il))**2 + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + IF ( imurain == 3 ) THEN + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + z1 = zx(mgs,il) + qr = qx(mgs,il) + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/(z1*1000.*1000) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + ELSEIF ( imurain == 1 ) THEN + g1 = (6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))) + z1 = zx(mgs,il) + qr = qx(mgs,il) + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(6*qr)**2/(z1*(pi*xdn(mgs,il))**2) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + + ENDIF + ENDIF + + IF ( zx(mgs,lr) > 0.0 ) THEN + vr = rho0(mgs)*qx(mgs,lr)/(1000.*cx(mgs,lr)) +! z1 = 36.*(alpha(kz)+2.0)*a(ix,jy,kz,lnr)*vr**2/((alpha(kz)+1.0)*pi**2) + qr = qx(mgs,lr) + nrx = cx(mgs,lr) + z1 = zx(mgs,lr) + +! xv = (db(1,kz)*a(1,1,kz,lr))**2/(a(1,1,kz,lnr)) +! rd = z1*(pi/6.*1000.)**2/xv + + +! determine shape parameter alpha by iteration + IF ( z1 .gt. 0.0 ) THEN + + IF ( imurain == 3 ) THEN + alp = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/(z1*pi**2) - 1. +! write(0,*) 'kz, alp, alpha(kz) = ',kz,alp,alpha(kz),rd,z1,xv + DO i = 1,20 + IF ( Abs(alp - alpha(mgs,lr)) .lt. 0.01 ) EXIT + alpha(mgs,lr) = Max( rnumin, Min( rnumax, alp ) ) + alp = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/(z1*pi**2) - 1. +! write(0,*) 'i,alp = ',i,alp + alp = Max( rnumin, Min( rnumax, alp ) ) + ENDDO + + ELSE ! imurain == 1 + g1 = 36.*(6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))*pi**2) + + rd1 = z1*(pi/6.*xdn(mgs,il))**2*nrx/(rho0(mgs)*qr)**2 + + alp = (6.+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ & + & ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rd1) - 1.0 + + DO i = 1,10 + IF ( Abs(alp - alpha(mgs,il)) .lt. 0.01 ) EXIT + alpha(mgs,il) = Max( alphamin, Min( alphamax, alp ) ) + + alp = (6.+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ & + & ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rd1) - 1.0 + + alp = Max( alphamin, Min( alphamax, alp ) ) + ENDDO + + + ENDIF +! ENDIF + +! +! Check whether the shape parameter is at or less than the minimum, and if it is, reset the +! concentration or reflectivity to match (prevents reflectivity from being out of balance with Q and N) +! + IF ( imurain == 3 ) THEN + IF ( .true. .and. (alpha(mgs,il) <= rnumin .or. alp == rnumin .or. alp == rnumax) ) THEN + + IF ( rescale_high_alpha .and. alp >= rnumax - 0.01 ) THEN ! reset c at high alpha to prevent growth in Z + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/z1*(1./(xdn(mgs,il)))**2 + an(igs(mgs),jy,kgs(mgs),ln(il)) = cx(mgs,il) + + ELSEIF ( rescale_low_alphar .and. alp <= rnumin ) THEN + + z1 = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/((alpha(mgs,lr)+1.0)*pi**2) + zx(mgs,il) = z1 + ENDIF + ENDIF + + ELSEIF ( imurain == 1 ) THEN + + g1 = (6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))) + + IF ( (rescale_low_alpha .or. rescale_high_alpha ) .and. & + & ( alpha(mgs,il) <= alphamin .or. alp == alphamin .or. alp == alphamax ) ) THEN + + + + IF ( rescale_high_alpha .and. alp >= alphamax - 0.01 ) THEN ! reset c at high alpha to prevent growth in Z + cx(mgs,il) = g1*rho0(mgs)**2*(qr)*qr/zx(mgs,lr)*(6./(pi*xdn(mgs,il)))**2 + an(igs(mgs),jy,kgs(mgs),ln(il)) = cx(mgs,il) + + ELSEIF ( rescale_low_alpha .and. alp <= alphamin ) THEN ! alpha = alphamin, so reset Z to prevent growth in C + z1 = g1*rho0(mgs)**2*(qr)*qr/nrx + z2 = z1*(6./(pi*xdn(mgs,il)))**2 + zx(mgs,il) = z2 + an(igs(mgs),jy,kgs(mgs),lz(il)) = z2 + ENDIF + ENDIF ! imurain + + ENDIF ! z > 0 + + tmp = alpha(mgs,lr) + 4./3. + i = Int(dgami*(tmp)) + del = tmp - dgam*i + x = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami + + tmp = alpha(mgs,lr) + 1. + i = Int(dgami*(tmp)) + del = tmp - dgam*i + y = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami + +! ventrx(mgs) = Gamma(alpha(mgs,lr) + 4./3.)/(alpha(mgs,lr) + 1.)**(1./3.)/Gamma(alpha(mgs,lr) + 1.) + ventrx(mgs) = x/(y*(alpha(mgs,lr) + 1.)**(1./3.)) + + IF ( imurain == 3 .and. izwisventr == 2 ) THEN + + tmp = alpha(mgs,lr) + 1.5 + br/6. + i = Int(dgami*(tmp)) + del = tmp - dgam*i + x = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami + +! ventrx(mgs) = Gamma(alpha(mgs,lr) + 1.5 + br/6.)/Gamma(alpha(mgs,lr) + 1.) + ventrxn(mgs) = x/(y*(alpha(mgs,lr) + 1.)**((1.+br)/6. + 1./3.)) + + ELSEIF ( imurain == 1 .and. iferwisventr == 2 ) THEN + + tmp = alpha(mgs,lr) + 2.5 + br/2. + i = Int(dgami*(tmp)) + del = tmp - dgam*i + x = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami + +! ventrx(mgs) = Gamma(alpha(mgs,lr) + 1.5 + br/6.)/Gamma(alpha(mgs,lr) + 1.) + ventrxn(mgs) = x/y + + + ENDIF + + + ENDIF + ENDIF + + ENDIF + + ENDDO +! CALL cld_cpu('Z-MOMENT-1r2') + ENDIF ! } + + +! write(0,*) 'NUCOND: Set ssf variables, ssmxinit =',ssmxinit ssmx = 0.0 DO mgs = 1,ngscnt @@ -8483,6 +10391,8 @@ SUBROUTINE NUCOND & ssfkp1(mgs) = ssfilt(igs(mgs),jgs,Min(nz-1,kgs(mgs)+1)) ssfkm1(mgs) = ssfilt(igs(mgs),jgs,Max(1,kgs(mgs)-1)) +! IF ( wvel(mgs) /= 0.0 ) write(0,*) 'mgs,wvel1,ssf = ',mgs,wvel(mgs),ssf(mgs) + ENDDO @@ -8492,7 +10402,7 @@ SUBROUTINE NUCOND & ! cloud water variables ! - if ( ndebug .gt. 0 )write(0,*) 'ICEZVD_DR: Set cloud water variables' + if ( ndebug .gt. 0 ) write(0,*) 'ICEZVD_DR: Set cloud water variables' do mgs = 1,ngscnt xv(mgs,lc) = 0.0 @@ -8596,7 +10506,9 @@ SUBROUTINE NUCOND & DO mgs=1,ngscnt dcloud = 0.0 - IF ( temg(mgs) .le. tfrh .and. qx(mgs,lv)/qvs(mgs) < maxsupersat ) THEN + ! Skip points at low temperature if SS stays less than 1.08, + ! otherwise allow nucleation at low temp (will freeze at next time step) + IF ( temg(mgs) .le. tfrh .and. qx(mgs,lv)/qvs(mgs) < maxlowtempss ) THEN CYCLE ENDIF @@ -8614,23 +10526,22 @@ SUBROUTINE NUCOND & QEVAP= Min( qx(mgs,lc), R1*(qss(mgs)-qvap(mgs)) ) - IF ( qx(mgs,lc) .LT. QEVAP ) THEN ! GO TO 63 + IF ( qx(mgs,lc) <= QEVAP ) THEN ! GO TO 63 qwvp(mgs) = qwvp(mgs) + qx(mgs,lc) - thetap(mgs) = thetap(mgs) - felv(mgs)*qx(mgs,lc)/(cp*pi0(mgs)) + thetap(mgs) = thetap(mgs) - felvcp(mgs)*qx(mgs,lc)/(pi0(mgs)) IF ( io_flag .and. nxtra > 1 ) THEN axtra(igs(mgs),jy,kgs(mgs),1) = -qx(mgs,lc)/dtp ENDIF qx(mgs,lc) = 0. IF ( restoreccn ) THEN - IF ( irenuc <= 2 ) THEN - IF ( .not. invertccn ) THEN - ccnc(mgs) = Max( ccnc(mgs), Min( qccn*rho0(mgs), ccnc(mgs) + cx(mgs,lc) ) ) - ELSE - ccnc(mgs) = ccnc(mgs) + cx(mgs,lc) - ENDIF - ENDIF - IF ( lccna > 1 ) THEN - ccna(mgs) = ccna(mgs) - cx(mgs,lc) + IF ( lccna > 1 ) THEN + ccna(mgs) = ccna(mgs) - restoreccnfrac*cx(mgs,lc) + ELSEIF ( irenuc <= 2 ) THEN + IF ( .not. invertccn ) THEN + ccnc(mgs) = Max( ccnc(mgs), Min( qccn*rho0(mgs), ccnc(mgs) + restoreccnfrac*cx(mgs,lc) ) ) + ELSE + ccnc(mgs) = ccnc(mgs) + restoreccnfrac*cx(mgs,lc) + ENDIF ENDIF ENDIF cx(mgs,lc) = 0. @@ -8640,39 +10551,37 @@ SUBROUTINE NUCOND & qx(mgs,lc) = qx(mgs,lc) - QEVAP IF ( qx(mgs,lc) .le. 0. ) THEN IF ( restoreccn ) THEN - IF ( irenuc <= 2 ) THEN + IF ( lccna > 1 ) THEN + ccna(mgs) = ccna(mgs) - restoreccnfrac*cx(mgs,lc) + ELSEIF ( irenuc <= 2 ) THEN ! ccnc(mgs) = Max( ccnc(mgs), Min( qccn*rho0(mgs), ccnc(mgs) + cx(mgs,lc) ) ) ! ccnc(mgs) = ccnc(mgs) + cx(mgs,lc) IF ( .not. invertccn ) THEN - ccnc(mgs) = Max( ccnc(mgs), Min( qccn*rho0(mgs), ccnc(mgs) + cx(mgs,lc) ) ) + ccnc(mgs) = Max( ccnc(mgs), Min( qccn*rho0(mgs), ccnc(mgs) + restoreccnfrac*cx(mgs,lc) ) ) ELSE - ccnc(mgs) = ccnc(mgs) + cx(mgs,lc) + ccnc(mgs) = ccnc(mgs) + restoreccnfrac*cx(mgs,lc) ENDIF ENDIF - IF ( lccna > 1 ) THEN - ccna(mgs) = ccna(mgs) - cx(mgs,lc) - ENDIF ENDIF cx(mgs,lc) = 0. ELSE tmp = 0.9*QEVAP*cx(mgs,lc)/qctmp ! let droplets get smaller but also remove some. A factor of 1.0 would maintain same size IF ( restoreccn ) THEN - IF ( irenuc <= 2 ) THEN + IF ( lccna > 1 ) THEN + ccna(mgs) = ccna(mgs) - restoreccnfrac*tmp + ELSEIF ( irenuc <= 2 ) THEN ! ccnc(mgs) = Max( ccnc(mgs), Min( qccn*rho0(mgs), ccnc(mgs) + tmp ) ) ! ccnc(mgs) = ccnc(mgs) + tmp IF ( .not. invertccn ) THEN - ccnc(mgs) = Max( ccnc(mgs), Min( qccn*rho0(mgs), ccnc(mgs) + tmp ) ) + ccnc(mgs) = Max( ccnc(mgs), Min( qccn*rho0(mgs), ccnc(mgs) + restoreccnfrac*tmp ) ) ELSE - ccnc(mgs) = ccnc(mgs) + tmp + ccnc(mgs) = ccnc(mgs) + restoreccnfrac*tmp ENDIF ENDIF - IF ( lccna > 1 ) THEN - ccna(mgs) = ccna(mgs) - tmp - ENDIF ENDIF cx(mgs,lc) = cx(mgs,lc) - tmp ENDIF - thetap(mgs) = thetap(mgs) - felv(mgs)*QEVAP/(CP*pi0(mgs)) + thetap(mgs) = thetap(mgs) - felvcp(mgs)*QEVAP/(pi0(mgs)) IF ( io_flag .and. nxtra > 1 ) THEN axtra(igs(mgs),jy,kgs(mgs),1) = -QEVAP/dtp ENDIF @@ -8954,6 +10863,19 @@ SUBROUTINE NUCOND & !! & dx*dy*dz3d(igs(mgs),jy,kgs(mgs)) + IF ( lzr > 1 .and. rcond == 2 .and. qx(mgs,lr) .gt. qxmin(lr) & + & .and. cx(mgs,lr) .gt. 1.e-9 ) THEN + tmp = qx(mgs,lr)/cx(mgs,lr) + IF ( imurain == 3 ) THEN + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + ELSE + g1 = 36.*(6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))*pi**2) + + ENDIF + zx(mgs,lr) = zx(mgs,lr) + g1*(rho0(mgs)/(xdn(mgs,lr)))**2*( 2.*( tmp ) * dqr ) + ENDIF + theta(mgs) = thetap(mgs) + theta0(mgs) temg(mgs) = theta(mgs)*f1 ltemq = (temg(mgs)-163.15)/fqsat+1.5 @@ -8995,7 +10917,8 @@ SUBROUTINE NUCOND & ! IF ( ssf(mgs) > ssmx .and. ssf(mgs) < 5.0 .and. ccnc(mgs) > 0.1*cwnccn(mgs) ) THEN ! this one works ! IF ( ssf(mgs) > ssmx .and. ssf(mgs) < 20.0 ) THEN ! test -- fails ! IF ( ssf(mgs) > ssmx .and. ssf(mgs) < 20.0 .and. ccnc(mgs) > 0.1*cwnccn(mgs)) THEN ! test -- is OK - IF ( ssf(mgs) > ssmx .and. ssf(mgs) < 20.0 .and. ccnc(mgs) > 0.05*cwnccn(mgs)) THEN ! test + IF ( ssf(mgs) > ssmx .and. ssf(mgs) < 20.0 .and. & + ( ccnc(mgs) > 0.05*cwnccn(mgs) .or. ( ac_opt > 0 .and. ccnc_ac(mgs) - cx(mgs,lc) > 0.0 ) ) ) THEN ! test ! IF ( ssf(mgs) > ssmx ) THEN ! original condition CALL QVEXCESS(ngs,mgs,qwvp,qv0,qx(1,lc),pres,thetap,theta0,dcloud, & & pi0,tabqvs,nqsat,fqsat,cbw,fcqv1,felvcp,ssmx,pk,ngscnt) @@ -9006,7 +10929,7 @@ SUBROUTINE NUCOND & ELSE dcloud = 0.0 ENDIF - + thetap(mgs) = thetap(mgs) + felvcp(mgs)*DCLOUD/(pi0(mgs)) qwvp(mgs) = qwvp(mgs) - DCLOUD qx(mgs,lc) = qx(mgs,lc) + DCLOUD @@ -9031,11 +10954,16 @@ SUBROUTINE NUCOND & IF ( .not. flag_qndrop ) THEN ! { do not calculate number of droplets if using wrf-chem + IF ( ac_opt == 0 ) THEN + cnuctmp = cnuc(mgs) + ELSE + cnuctmp = ccnc_ac(mgs) + ENDIF ! IF ( ssmax(mgs) .lt. sscb .and. qx(mgs,lc) .gt. qxmin(lc)) THEN IF ( dcloud .gt. qxmin(lc) .and. wvel(mgs) > 0.0) THEN ! CN(mgs) = CCNE*wvel(mgs)**cnexp ! *Min(1.0,1./dtp) ! 0.3465 - CN(mgs) = CCNE0*cnuc(mgs)**(2./(2.+cck))*wvel(mgs)**cnexp ! *Min(1.0,1./dtp) ! 0.3465 + CN(mgs) = CCNE0*cnuctmp**(2./(2.+cck))*wvel(mgs)**cnexp ! *Min(1.0,1./dtp) ! 0.3465 IF ( ny .le. 2 .and. cn(mgs) .gt. 0.0 & & .and. ncdebug .ge. 1 ) THEN write(iunit,*) 'CN: ',cn(mgs)*1.e-6, cx(mgs,lc)*1.e-6, qx(mgs,lc)*1.e3, & @@ -9057,12 +10985,16 @@ SUBROUTINE NUCOND & ENDIF IF ( cn(mgs) .gt. 0.0 ) THEN - IF ( cn(mgs) .gt. ccnc(mgs) ) THEN - cn(mgs) = ccnc(mgs) -! ccnc(mgs) = 0.0 + IF ( ac_opt == 0 ) THEN + IF ( cn(mgs) .gt. ccnc(mgs) ) THEN + cn(mgs) = ccnc(mgs) +! ccnc(mgs) = 0.0 + ENDIF + ELSE + cn(mgs) = Min( cn(mgs), ccnc_ac(mgs) ) ENDIF ! cx(mgs,lc) = cx(mgs,lc) + cn(mgs) - IF ( irenuc <= 2 ) ccnc(mgs) = Max(0.0, ccnc(mgs) - cn(mgs)) + IF ( irenuc <= 2 .and. lccna < 1 ) ccnc(mgs) = Max(0.0, ccnc(mgs) - cn(mgs)) ccna(mgs) = ccna(mgs) + cn(mgs) ENDIF @@ -9108,7 +11040,8 @@ SUBROUTINE NUCOND & DSSDZ=0. r2dzm=0.50/dz3d(igs(mgs),jy,kgs(mgs)) - IF ( irenuc >= 0 .and. .not. flag_qndrop) THEN ! turn off nucleation when flag_qndrop (using WRF-CHEM for activation) + + IF ( irenuc >= 0 .and. ac_opt == 0 .and. .not. flag_qndrop ) THEN ! turn off nucleation when flag_qndrop (using WRF-CHEM for activation) IF ( irenuc < 2 ) THEN !{ @@ -9185,6 +11118,7 @@ SUBROUTINE NUCOND & ! nucleation CN(mgs) = Min(cn(mgs), ccnc(mgs)) cn(mgs) = Min(cn(mgs), 0.5*dqc/cwmasn) ! limit the nucleation mass to half of the condensation mass + CN(mgs) = Min( CN(mgs), Max(0.0, (cnuc(mgs) - ccna(mgs) )) ) IF ( .false. .and. ny <= 2 ) THEN write(0,*) 'i,k, cwmasn = ',igs(mgs),kgs(mgs),cwmasn @@ -9212,8 +11146,136 @@ SUBROUTINE NUCOND & cx(mgs,lc) = cx(mgs,lc) + cn(mgs) - ccnc(mgs) = Max(0.0, ccnc(mgs) - cn(mgs)) + IF ( lccna < 1 ) ccnc(mgs) = Max(0.0, ccnc(mgs) - cn(mgs)) + + ELSEIF ( irenuc == 3 ) THEN !} { + ! Phillips Donner Garner 2007 +! if (ndebug .gt. 0) write(0,*) 'ICEZVD_DR: Cloud reNucleation, wvel = ',wvel(mgs) +! CN(mgs) = cwccn*Min(ssf(mgs),ssfcut)**cck + +! Need to calculate new ssf since condensation has happened: + temp1 = (theta0(mgs)+thetap(mgs))*pk(mgs) ! t77(ix,jy,kz) + ltemq = Int( (temp1-163.15)/fqsat+1.5 ) + ltemq = Min( nqsat, Max(1,ltemq) ) + + c1= pqs(mgs)*tabqvs(ltemq) + + ssf(mgs) = 0.0 + IF ( c1 > 0. ) THEN + ssf(mgs) = 100.*(qx(mgs,lv)/c1 - 1.0) ! from "new" values + ENDIF + CN(mgs) = cnuc(mgs)*Min(1.0, (ssf(mgs))**cck ) ! + + CN(mgs) = Max( 0.0, CN(mgs) - ccna(mgs) ) ! this was from + ! Philips, Donner et al. 2007, but results in too much limitation of + ! nucleation + CN(mgs) = Min(cn(mgs), ccnc(mgs)) + cn(mgs) = Min(cn(mgs), 0.5*dqc/cwmasn) ! limit the nucleation mass to half of the condensation mass + + cx(mgs,lc) = cx(mgs,lc) + cn(mgs) + + ! 6/13/2016: Phillips et al. appears not to decrement CCN, but only increments CCNa. + ! This would allow an initially non-homogeneous (vertically, e.g.) initial value of CCN/rho_air + ccnc(mgs) = Max(0.0, ccnc(mgs) - cn(mgs)) + + ELSEIF ( irenuc == 4 ) THEN !} { + ! modification of Phillips Donner Garner 2007 +! if (ndebug .gt. 0) write(0,*) 'ICEZVD_DR: Cloud reNucleation, wvel = ',wvel(mgs) +! CN(mgs) = CCNE0*cnuc(mgs)**(2./(2.+cck))*Max(0.0,wvel(mgs))**cnexp +! cn(mgs) = Min( cn(mgs), cnuc(mgs) ) +! Need to calculate new ssf since condensation has happened: + temp1 = (theta0(mgs)+thetap(mgs))*pk(mgs) ! t77(ix,jy,kz) + ltemq = Int( (temp1-163.15)/fqsat+1.5 ) + ltemq = Min( nqsat, Max(1,ltemq) ) + + c1= pqs(mgs)*tabqvs(ltemq) + IF ( c1 > 0. ) THEN + ssf(mgs) = Max(0.0, 100.*((qv0(mgs) + qwvp(mgs))/c1 - 1.0) ) ! from "new" values + ELSE + ssf(mgs) = 0.0 + ENDIF + CN(mgs) = cnuc(mgs)*Min(ssf2kmax, ssf(mgs)**cck) ! this allows cn(mgs) > cnuc(mgs) + + CN(mgs) = Max( 0.0, CN(mgs) - ccna(mgs) ) ! this was from + ! Philips, Donner et al. 2007, but results in too much limitation of + ! nucleation +! CN(mgs) = Min(cn(mgs), ccnc(mgs)) + cn(mgs) = Min(cn(mgs), 0.5*dqc/cwmasn) ! limit the nucleation mass to half of the condensation mass + + IF ( cn(mgs) > 0.0 ) THEN + cx(mgs,lc) = cx(mgs,lc) + cn(mgs) + ! ccnc(mgs) = Max(0.0, ccnc(mgs) - cn(mgs)) + + dcrit = 2.0*2.5e-7 + + dcloud = 1000.*dcrit**3*Pi/6.*cn(mgs) + qx(mgs,lc) = qx(mgs,lc) + DCLOUD + thetap(mgs) = thetap(mgs) + felvcp(mgs)*DCLOUD/(pi0(mgs)) + qwvp(mgs) = qwvp(mgs) - DCLOUD + ENDIF + ! 6/13/2016: Phillips et al. appears not to decrement CCN, but only increments CCNa. + ! This would allow an initially non-homogeneous (vertically, e.g.) initial value of CCN/rho_air +! ccnc(mgs) = Max(0.0, ccnc(mgs) - cn(mgs)) + + + + ELSEIF ( irenuc == 6 ) THEN !} { + + ! simple Twomey scheme but limit activation to try to do most activation near cloud base, but keep some CCN available for renuclation +! if (ndebug .gt. 0) write(0,*) 'ICEZVD_DR: Cloud reNucleation, wvel = ',wvel(mgs) + cn(mgs) = 0.0 +! IF ( ccna(mgs) < 0.7*cnuc(mgs) .and. ccnc(mgs) > 0.69*cnuc(mgs) - ccna(mgs)) THEN ! here, assume we are near cloud base and use Twomey formulation + IF ( ccna(mgs) < 0.7*cnuc(mgs) ) THEN ! here, assume we are near cloud base and use Twomey formulation + CN(mgs) = Min( 0.9*cnuc(mgs), CCNE0*cnuc(mgs)**(2./(2.+cck))*Max(0.0,wvel(mgs))**cnexp )! *Min(1.0,1./dtp) ! 0.3465 +! IF ( cn(mgs) + ccna(mgs) > 0.71*cnuc ) THEN + ! prevent this branch from activating more than 70% of CCN + CN(mgs) = Min( CN(mgs), Max(0.0, (0.7*cnuc(mgs) - ccna(mgs) )) ) +! CN(mgs) = Min( CN(mgs), Max(0.0, 0.71*ccnc(mgs) - ccna(mgs) ) ) + + ELSE + ! if a large fraction of CCN have been activated, then assume we are in the cloud interior and use local SSw as in Phillips et al. 2007. + + temp1 = (theta0(mgs)+thetap(mgs))*pk(mgs) ! t77(ix,jy,kz) +! t0(ix,jy,kz) = temp1 + ltemq = Int( (temp1-163.15)/fqsat+1.5 ) + ltemq = Min( nqsat, Max(1,ltemq) ) + +! c1 = t00(igs(mgs),jy,kgs(mgs))*tabqvs(ltemq) + c1= pqs(mgs)*tabqvs(ltemq) + IF ( c1 > 0. ) THEN + ssf(mgs) = Max(0.0, 100.*((qv0(mgs) + qwvp(mgs))/c1 - 1.0) ) ! from "new" values + ELSE + ssf(mgs) = 0.0 + ENDIF + +! CN(mgs) = cnuc(mgs)*Min(0.99, Min(ssf(mgs),ssfcut)**cck ) ! + CN(mgs) = cnuc(mgs)*Min(2.0, Max(0.0,ssf(mgs))**cck ) ! +! CN(mgs) = cnuc(mgs)*Min(ssf(mgs),ssfcut)**cck ! + + CN(mgs) = Min(0.01*cnuc(mgs), Max( 0.0, CN(mgs) - ccna(mgs) ) ) ! this was from +! cn(mgs) = 0.0 + ENDIF +! ccne = ccnefac*1.e6*(1.e-6*Abs(cwccn))**(2./(2.+cck)) +!!! CN(mgs) = Max( 0.0, CN(mgs) - ccna(mgs) ) ! this was from + ! Philips, Donner et al. 2007, but results in too much limitation of + ! nucleation +! CN(mgs) = Min(cn(mgs), ccnc(mgs)) +! cn(mgs) = Min(cn(mgs), 0.5*dqc/cwmasn) ! limit the nucleation mass to half of the condensation mass + + IF ( cn(mgs) > 0.0 ) THEN + cx(mgs,lc) = cx(mgs,lc) + cn(mgs) + + ! create some small droplets at minimum size (CP 2000), although it adds very little liquid + + dcrit = 2.0*2.5e-7 + + dcloud = 1000.*dcrit**3*Pi/6.*cn(mgs) + qx(mgs,lc) = qx(mgs,lc) + DCLOUD + thetap(mgs) = thetap(mgs) + felvcp(mgs)*DCLOUD/(pi0(mgs)) + qwvp(mgs) = qwvp(mgs) - DCLOUD + ! ccnc(mgs) = Max(0.0, ccnc(mgs) - cn(mgs)) + ENDIF ELSEIF ( irenuc == 5 ) THEN !} { ! modification of Phillips Donner Garner 2007 @@ -9271,17 +11333,22 @@ SUBROUTINE NUCOND & ! 6/13/2016: Phillips et al. appears not to decrement CCN, but only increments CCNa. ! This would allow an initially non-homogeneous (vertically, e.g.) initial value of CCN/rho_air ! ccnc(mgs) = Max(0.0, ccnc(mgs) - cn(mgs)) - ELSEIF ( irenuc == 7 ) THEN !} { + ELSEIF ( irenuc == 7 .or. irenuc == 17 ) THEN !} { ! simple Twomey scheme but limit activation to try to do most activation near cloud base, but keep some CCN available for renuclation ! if (ndebug .gt. 0) write(0,*) 'ICEZVD_DR: Cloud reNucleation, wvel = ',wvel(mgs) cn(mgs) = 0.0 + IF ( irenuc == 7 ) THEN + frac = 0.9 + ELSE + frac = 0.98 + ENDIF ! IF ( ccna(mgs) < 0.7*cnuc(mgs) .and. ccnc(mgs) > 0.69*cnuc(mgs) - ccna(mgs)) THEN ! here, assume we are near cloud base and use Twomey formulation - IF ( ccna(mgs) < 0.9*cnuc(mgs) ) THEN ! { here, assume we are near cloud base and use Twomey formulation - CN(mgs) = Min( 0.91*cnuc(mgs), CCNE0*cnuc(mgs)**(2./(2.+cck))*Max(0.0,wvel(mgs))**cnexp )! *Min(1.0,1./dtp) ! 0.3465 + IF ( ccna(mgs) < frac*cnuc(mgs) ) THEN ! { here, assume we are near cloud base and use Twomey formulation + CN(mgs) = Min( (frac+0.01)*cnuc(mgs), CCNE0*cnuc(mgs)**(2./(2.+cck))*Max(0.0,wvel(mgs))**cnexp )! *Min(1.0,1./dtp) ! 0.3465 ! IF ( cn(mgs) + ccna(mgs) > 0.71*cnuc ) THEN ! prevent this branch from activating more than 70% of CCN - CN(mgs) = Min( CN(mgs), Max(0.0, (0.9*cnuc(mgs) - ccna(mgs) )) ) + CN(mgs) = Min( CN(mgs), Max(0.0, (frac*cnuc(mgs) - ccna(mgs) )) ) ! CN(mgs) = Min( CN(mgs), Max(0.0, 0.71*ccnc(mgs) - ccna(mgs) ) ) ! write(0,*) '1: k,cn = ',kgs(mgs),cn(mgs),ssf(mgs) !! IF ( ccncuf(mgs) > 0.0 .and. cn(mgs) < 1.e-3 .and. ssmax(mgs) > 1.0 ) THEN @@ -9319,7 +11386,7 @@ SUBROUTINE NUCOND & ! write(0,*) 'k,cn = ',kgs(mgs),cn(mgs),ssf(mgs) ! write(0,*) 'ccn-ccna = ',cnuc(mgs) - ccna(mgs),ccnc(mgs) - ccna(mgs) ! IF ( ccncuf(mgs) > 0.0 .and. cn(mgs) < 1.e-3 .and. ssmax(mgs) > 1.0 ) THEN - IF ( ccncuf(mgs) > 0.0 .and. ssf(mgs) > ssmxuf .and. ssmax(mgs) > ssmxuf ) THEN + IF ( ccncuf(mgs) > 0.0 .and. ssf(mgs) > ssmxuf .and. ( ssmax(mgs) > ssmxuf .or. lss < 1 ) ) THEN CNuf(mgs) = Min( ccncuf(mgs), CCNE0*ccncuf(mgs)**(2./(2.+cck))*Max(0.0,wvel(mgs))**cnexp )! *Min(1.0,1./dtp) ! 0.3465 ! IF ( cnuf(mgs) >= 0.0 ) write(0,*) 'cnuf, k = ',cnuf(mgs),ccncuf(mgs),kgs(mgs) ENDIF @@ -9421,7 +11488,7 @@ SUBROUTINE NUCOND & IF ( cn(mgs) > 0.0 ) THEN cx(mgs,lc) = cx(mgs,lc) + cn(mgs) - ccnc(mgs) = Max(0.0, ccnc(mgs) - cn(mgs)) + ! ccnc(mgs) = Max(0.0, ccnc(mgs) - cn(mgs)) ! create some small droplets at minimum size (CP 2000), although it adds very little liquid @@ -9440,8 +11507,6 @@ SUBROUTINE NUCOND & ccna(mgs) = ccna(mgs) + cn(mgs) - - ENDIF ! irenuc >= 0 .and. .not. flag_qndrop IF( cx(mgs,lc) .GT. 0. .AND. qx(mgs,lc) .LE. qxmin(lc)) cx(mgs,lc)=0. @@ -9494,7 +11559,11 @@ SUBROUTINE NUCOND & ELSEIF ( imaxsupopt == 4 ) THEN cn(mgs) = Min( Max(ccnc(mgs),cwnccn(mgs)), rho0(mgs)*qvex/Max( cwmasn5, Max(cwmas20,xmas(mgs,lc)) ) ) ENDIF - ccnc(mgs) = Max( 0.0, ccnc(mgs) - cn(mgs) ) + IF ( lccna > 1 ) THEN + ccna(mgs) = ccna(mgs) + cn(mgs) + ELSE + ccnc(mgs) = Max( 0.0, ccnc(mgs) - cn(mgs) ) + ENDIF cx(mgs,lc) = cx(mgs,lc) + cn(mgs) ENDIF @@ -9599,15 +11668,21 @@ SUBROUTINE NUCOND & ! qx(mgs,lr) = an(igs(mgs),jy,kgs(mgs),lr) end if + IF ( lzr > 1 .and. rcond == 2 ) THEN + an(igs(mgs),jy,kgs(mgs),lzr) = zx(mgs,lr) + & + & min( an(igs(mgs),jy,kgs(mgs),lzr), 0.0 ) + ENDIF IF ( ipconc .ge. 2 ) THEN an(igs(mgs),jy,kgs(mgs),lnc) = Max(cx(mgs,lc) , 0.0) IF ( lss > 1 ) an(igs(mgs),jy,kgs(mgs),lss) = Max( 0.0, ssmax(mgs) ) - IF ( lccn .gt. 1 ) THEN - an(igs(mgs),jy,kgs(mgs),lccn) = Max(0.0, ccnc(mgs) ) + IF ( ac_opt == 0 ) THEN + IF ( lccn .gt. 1 .and. lccna .lt. 1 ) THEN + an(igs(mgs),jy,kgs(mgs),lccn) = Max(0.0, ccnc(mgs) ) + ENDIF ENDIF - IF ( lccnuf .gt. 1 ) THEN + IF ( lccnuf .gt. 1 .and. .not. ( lccna .gt. 1 .and. i_uf_or_ccn > 0 ) ) THEN an(igs(mgs),jy,kgs(mgs),lccnuf) = Max(0.0, ccncuf(mgs) ) ENDIF IF ( lccna .gt. 1 ) THEN @@ -9684,6 +11759,42 @@ SUBROUTINE NUCOND & IF ( lhl .gt. 1 ) THEN + IF ( lzhl .gt. 1 ) THEN + + an(ix,jy,kz,lzhl) = Max(0.0, an(ix,jy,kz,lzhl) ) + + IF ( an(ix,jy,kz,lhl) .ge. frac*qxmin(lhl) .and. rescale_low_alpha ) THEN ! check 6th moment + + IF ( an(ix,jy,kz,lnhl) .gt. 0.0 ) THEN + + IF ( lvhl .gt. 1 ) THEN + IF ( an(ix,jy,kz,lvhl) .gt. 0.0 ) THEN + hwdn = dn(ix,jy,kz)*an(ix,jy,kz,lhl)/an(ix,jy,kz,lvhl) + ELSE + hwdn = xdn0(lhl) + ENDIF + hwdn = Max( xdnmn(lhl), hwdn ) + ELSE + hwdn = xdn0(lhl) + ENDIF + + chw = an(ix,jy,kz,lnhl) + g1 = (6.0+alphamin)*(5.0+alphamin)*(4.0+alphamin)/ & + & ((3.0+alphamin)*(2.0+alphamin)*(1.0+alphamin)) + z1 = g1*dn(ix,jy,kz)**2*( an(ix,jy,kz,lhl) )*an(ix,jy,kz,lhl)/chw + z1 = z1*(6./(pi*hwdn))**2 + ELSE + z1 = 0.0 + ENDIF + + an(ix,jy,kz,lzhl) = Min( z1, an(ix,jy,kz,lzhl) ) + + IF ( an(ix,jy,kz,lnhl) .lt. 1.e-5 ) THEN +! an(ix,jy,kz,lzhl) = 0.9*an(ix,jy,kz,lzhl) + ENDIF + ENDIF + + ENDIF !lzhl if ( an(ix,jy,kz,lhl) .lt. frac*qxmin(lhl) .or. zerocx(lhl) ) then @@ -9703,6 +11814,10 @@ SUBROUTINE NUCOND & IF ( lhlw .gt. 1 ) THEN an(ix,jy,kz,lhlw) = 0.0 ENDIF + + IF ( lnhlf .gt. 1 ) THEN + an(ix,jy,kz,lnhlf) = 0.0 + ENDIF IF ( lzhl .gt. 1 ) THEN an(ix,jy,kz,lzhl) = 0.0 @@ -9780,13 +11895,49 @@ SUBROUTINE NUCOND & + IF ( lzh .gt. 1 ) THEN - if ( an(ix,jy,kz,lh) .lt. frac*qxmin(lh) .or. zerocx(lh) ) then - -! IF ( an(ix,jy,kz,lh) .gt. 0 ) THEN - an(ix,jy,kz,lv) = an(ix,jy,kz,lv) + an(ix,jy,kz,lh) - an(ix,jy,kz,lh) = 0.0 -! ENDIF + an(ix,jy,kz,lzh) = Max(0.0, an(ix,jy,kz,lzh) ) + + IF ( .false. .and. an(ix,jy,kz,lh) .ge. frac*qxmin(lh) .and. rescale_low_alpha ) THEN + + IF ( an(ix,jy,kz,lnh) .gt. 0.0 ) THEN + + IF ( lvh .gt. 1 ) THEN + IF ( an(ix,jy,kz,lvh) .gt. 0.0 ) THEN + hwdn = dn(ix,jy,kz)*an(ix,jy,kz,lh)/an(ix,jy,kz,lvh) + ELSE + hwdn = xdn0(lh) + ENDIF + hwdn = Max( xdnmn(lh), hwdn ) + ELSE + hwdn = xdn0(lh) + ENDIF + + chw = an(ix,jy,kz,lnh) + g1 = (6.0+alphamin)*(5.0+alphamin)*(4.0+alphamin)/ & + & ((3.0+alphamin)*(2.0+alphamin)*(1.0+alphamin)) + z1 = g1*dn(ix,jy,kz)**2*( an(ix,jy,kz,lh) )*an(ix,jy,kz,lh)/chw + z1 = z1*(6./(pi*hwdn))**2 + ELSE + z1 = 0.0 + ENDIF + + an(ix,jy,kz,lzh) = Min( z1, an(ix,jy,kz,lzh) ) + + IF ( an(ix,jy,kz,lnh) .lt. 1.e-5 ) THEN +! an(ix,jy,kz,lzh) = 0.9*an(ix,jy,kz,lzh) + ENDIF + ENDIF + + ENDIF + + if ( an(ix,jy,kz,lh) .lt. frac*qxmin(lh) .or. zerocx(lh) ) then + +! IF ( an(ix,jy,kz,lh) .gt. 0 ) THEN + an(ix,jy,kz,lv) = an(ix,jy,kz,lv) + an(ix,jy,kz,lh) + an(ix,jy,kz,lh) = 0.0 +! ENDIF IF ( ipconc .ge. 5 ) THEN ! .and. an(ix,jy,kz,lnh) .gt. 0.0 ) THEN an(ix,jy,kz,lnh) = 0.0 @@ -9799,6 +11950,10 @@ SUBROUTINE NUCOND & IF ( lhw .gt. 1 ) THEN an(ix,jy,kz,lhw) = 0.0 ENDIF + + IF ( lnhf .gt. 1 ) THEN + an(ix,jy,kz,lnhf) = 0.0 + ENDIF IF ( lzh .gt. 1 ) THEN an(ix,jy,kz,lzh) = 0.0 @@ -9936,6 +12091,9 @@ SUBROUTINE NUCOND & end if + IF ( lzr > 1 ) THEN + an(ix,jy,kz,lzr) = Max(0.0, an(ix,jy,kz,lzr) ) + ENDIF if ( an(ix,jy,kz,lr) .lt. frac*qxmin(lr) .or. zerocx(lr) & & ) then @@ -9946,6 +12104,10 @@ SUBROUTINE NUCOND & an(ix,jy,kz,lnr) = 0.0 ENDIF + IF ( lzr > 1 ) THEN + an(ix,jy,kz,lzr) = 0.0 + ENDIF + end if ! @@ -9998,18 +12160,25 @@ SUBROUTINE NUCOND & an(ix,jy,kz,lv) = an(ix,jy,kz,lv) + an(ix,jy,kz,lc) an(ix,jy,kz,lc)= 0.0 IF ( ipconc .ge. 2 ) THEN - IF ( lccn .gt. 1 ) THEN - an(ix,jy,kz,lccn) = & - & an(ix,jy,kz,lccn) + Max(0.0,an(ix,jy,kz,lnc)) + IF ( lccn .gt. 1 .or. ac_opt == 1 ) THEN + IF ( irenuc < 5 .and. lccna <= 1 ) THEN + IF ( ac_opt == 0 ) THEN + an(ix,jy,kz,lccn) = an(ix,jy,kz,lccn) + Max(0.0,an(ix,jy,kz,lnc)) + ENDIF + ELSEIF ( lccna > 1 ) THEN + an(ix,jy,kz,lccna) = Max( 0.0, an(ix,jy,kz,lccna) - Max(0.0,an(ix,jy,kz,lnc)) ) + ENDIF ENDIF an(ix,jy,kz,lnc) = 0.0 + IF ( lccn > 1 ) an(ix,jy,kz,lccn) = Max( 0.0, an(ix,jy,kz,lccn) ) - IF ( lccna > 0 ) THEN ! apply exponential decay to activated CCN to restore to environmental value + IF ( lccna > 0 .and. ac_opt == 0 ) THEN ! apply exponential decay to activated CCN to restore to environmental value + IF ( restoreccn ) THEN tmp = an(ix,jy,kz,li) + an(ix,jy,kz,ls) IF ( an(ix,jy,kz,lccna) > 1. .and. tmp < qxmin(li) ) an(ix,jy,kz,lccna) = an(ix,jy,kz,lccna)*Exp(-dtp/ccntimeconst) - - ELSEIF ( lccn > 1 .and. restoreccn ) THEN + ENDIF + ELSEIF ( lccn > 1 .and. restoreccn .and. ac_opt == 0 ) THEN ! in this case, we are treating the ccn field as ccna tmp = an(ix,jy,kz,li) + an(ix,jy,kz,ls) ! IF ( ny == 2 .and. ix == nx/2 ) THEN @@ -10071,8 +12240,9 @@ subroutine nssl_2mom_gs & ! & ln,ipc,lvol,lz,lliq, & & cdx, & & xdn0,tmp3d,tkediss & + & ,thproc,numproc,dx1,dy1,ngs & & ,timevtcalc,axtra,io_flag & - & , has_wetscav,rainprod2d, evapprod2d & + & , has_wetscav,rainprod2d, evapprod2d, alpha2d & & ,elec,its,ids,ide,jds,jde & & ) @@ -10153,9 +12323,17 @@ subroutine nssl_2mom_gs & integer :: my_rank = 0 integer, parameter :: myprock = 1, nprock = 1 logical, intent(in) :: has_wetscav + integer, intent(in) :: numproc + real, intent(inout) :: thproc(nz,numproc) + real, intent(in) :: dx1,dy1 real rainprod2d(-nor+1:nx+nor,-norz+ng1:nz+norz) real evapprod2d(-nor+1:nx+nor,-norz+ng1:nz+norz) + real alpha2d(-nor+1:nx+nor,-norz+ng1:nz+norz,3) + + real, parameter :: tfrdry = 243.15 + + logical lrescalelow(lc:lhab) real tkediss(-nor+1:nx+nor,-norz+ng1:nz+norz) real axtra(-nor+ng1:nx+nor,-nor+ng1:ny+nor,-norz+ng1:nz+norz,nxtra) @@ -10192,7 +12370,6 @@ subroutine nssl_2mom_gs & logical, parameter :: usegamxinf3 = .false. ! real rar ! rime accretion rate as calculated from qxacw - ! a few vars for time-split fallout real vtmax integer n,ndfall @@ -10299,7 +12476,6 @@ subroutine nssl_2mom_gs & ! integer nxmpb,nzmpb,nxz integer jgs,mgs,ngs,numgs - parameter (ngs=500) !500) integer, parameter :: ngsz = 500 integer ntt parameter (ntt=300) @@ -10362,7 +12538,8 @@ subroutine nssl_2mom_gs & real ex1, ft, rhoinv(ngs) double precision ec0(ngs) - real ac1,bc, taus, c1,d1,e1,f1,p380,tmp,tmp1,tmp2,tmp3,tmp4,tmp5,temp3 ! , sstdy, super + real ac1,bc, taus, c1,d1,e1,f1,p380,tmp,tmp1,tmp2,tmp3,tmp4,tmp5,tmp6,temp3 ! , sstdy, super + real :: flim real dw,dwr double precision :: tmpz, tmpzmlt real ratio, delx, dely @@ -10443,7 +12620,7 @@ subroutine nssl_2mom_gs & real temgx(ngs),temcgx(ngs) real qvs(ngs),qis(ngs),qss(ngs),pqs(ngs) real elv(ngs),elf(ngs),els(ngs) - real tsqr(ngs),ssi(ngs),ssw(ngs) + real tsqr(ngs),ssi(ngs),ssw(ngs),ssi0(ngs) real qcwtmp(ngs),qtmp,qtot(ngs) real qcond(ngs) real ctmp, sctmp @@ -10458,6 +12635,7 @@ subroutine nssl_2mom_gs & parameter ( rwradmn = 50.e-6 ) real dh0 real dg0(ngs),df0(ngs) + real dhwet(ngs),dhlwet(ngs),dfwet(ngs) real clionpmx,clionnmx parameter (clionpmx=1.e9,clionnmx=1.e9) ! Takahashi 84 @@ -10465,7 +12643,7 @@ subroutine nssl_2mom_gs & ! other arrays real fwet1(ngs),fwet2(ngs) - real fmlt1(ngs),fmlt2(ngs) + real fmlt1(ngs),fmlt2(ngs),fmlt1e(ngs) real fvds(ngs),fvce(ngs),fiinit(ngs) real fvent(ngs),fraci(ngs),fracl(ngs) ! @@ -10483,13 +12661,13 @@ subroutine nssl_2mom_gs & real cvm,cpm,rmm - real, parameter :: rovcp = rd/cp real, parameter :: cpv = 1885.0 ! specific heat of water vapor at constant pressure ! real fcci(ngs), fcip(ngs) ! real :: sfm1(ngs),sfm2(ngs) real :: gfm1(ngs),gfm2(ngs) + real :: ffm1(ngs),ffm2(ngs) real :: hfm1(ngs),hfm2(ngs) logical :: wetsfc(ngs),wetsfchl(ngs),wetsfcf(ngs) @@ -10519,6 +12697,7 @@ subroutine nssl_2mom_gs & real :: vtxbar(ngs,lc:lhab,3) real :: xmas(ngs,lc:lhab) real :: xdn(ngs,lc:lhab) + real :: xdntmp(ngs,lc:lhab) real :: cdxgs(ngs,lc:lhab) real :: xdia(ngs,lc:lhab,3) real :: vtwtdia(ngs,lr:lhab) ! sweep-out volume weighted diameter @@ -10529,6 +12708,10 @@ subroutine nssl_2mom_gs & real :: alpha(ngs,lc:lhab) real :: dab0lh(ngs,lc:lhab,lc:lhab) real :: dab1lh(ngs,lc:lhab,lc:lhab) + real :: zx(ngs,lr:lhab) + real :: zxmxd(ngs,lr:lhab) + real :: g1x(ngs,lr:lhab) + real :: qsimxdep(ngs) ! max sublimation of qi+qs+qis real :: qsimxsub(ngs) ! max depositionof qi+qs+qis @@ -10544,6 +12727,7 @@ subroutine nssl_2mom_gs & real ventrxn(ngs) real g1shr, alphashr real g1mlr, alphamlr + real g1smlr, alphasmlr real massfacshr, massfacmlr real :: qhgt8mm ! ice mass greater than 8mm @@ -10556,6 +12740,8 @@ subroutine nssl_2mom_gs & real, parameter :: srasheym = 0.1389 ! slope fraction from Rasmussen and Heymsfield ! real swvent(ngs),hwvent(ngs),rwvent(ngs),hlvent(ngs),hwventy(ngs),hlventy(ngs),rwventz(ngs) + real hxventtmp + real hlventinc(ngs),hwventinc(ngs) integer, parameter :: ndiam = 10 integer :: numdiam real hwvent0(ndiam+4),hlvent0 ! 0 to d1 @@ -10643,6 +12829,7 @@ subroutine nssl_2mom_gs & real chlsbv(ngs), chldpv(ngs) real chlmlr(ngs), chlmlrr(ngs) + real chlfmlr(ngs) ! real chlmlrsave(ngs),chlsave(ngs),qhlsave(ngs) real chlshr(ngs), chlshrr(ngs) @@ -10668,15 +12855,15 @@ subroutine nssl_2mom_gs & real qrcnw(ngs), qwcnr(ngs) real zrcnw(ngs),zracr(ngs),zracw(ngs),zrcev(ngs) - real qracw(ngs) ! qwacr(ngs), real qiacw(ngs) !, qwaci(ngs) real qsacw(ngs) ! ,qwacs(ngs), real qhacw(ngs) ! qwach(ngs), - real :: qhlacw(ngs) ! + real :: qhlacw(ngs), qxacwtmp, qxacrtmp, qxacitmp, qxacstmp ! real vhacw(ngs), vsacw(ngs), vhlacw(ngs), vhlacr(ngs) + real qfcev(ngs) real qfmul1(ngs),cfmul1(ngs) ! real qsacws(ngs) @@ -10685,7 +12872,7 @@ subroutine nssl_2mom_gs & ! arrays for x-ac-r and r-ac-x; ! real qsacr(ngs),qracs(ngs) - real qhacr(ngs),qhacrmlr(ngs) ! ,qrach(ngs) + real qhacr(ngs),qhacrmlr(ngs),qhacwmlr(ngs) ! ,qrach(ngs) real vhacr(ngs), zhacr(ngs), zhacrf(ngs), zrach(ngs), zrachl(ngs) real qiacr(ngs),qraci(ngs) @@ -10693,7 +12880,7 @@ subroutine nssl_2mom_gs & real qracif(ngs),qiacrf(ngs),qiacrs(ngs),ciacrs(ngs) - real :: qhlacr(ngs),qhlacrmlr(ngs) + real :: qhlacr(ngs),qhlacrmlr(ngs), qhlacwmlr(ngs) real qsacrs(ngs) !,qracss(ngs) ! ! ice - ice interactions @@ -10739,7 +12926,8 @@ subroutine nssl_2mom_gs & real zfmlr(ngs), zfdsv(ngs), zfsbv(ngs), zhlcnf(ngs), zfshr(ngs), zfshrr(ngs) real zhmlrtmp,zhmlr0inf,zhlmlr0inf real zhmlrr(ngs),zhlmlrr(ngs),zhshrr(ngs),zhlshrr(ngs),zfmlrr(ngs) - real zsmlr(ngs), zsmlrr(ngs), zsshr(ngs) +! real zsmlr(ngs) + real zsmlrr(ngs), zsshr(ngs), zsshrr(ngs) real zhcns(ngs), zhcni(ngs) real zhwdn(ngs), zfwdn(ngs) ! change in Z due to density changes real zhldn(ngs) ! change in Z due to density changes @@ -10780,9 +12968,10 @@ subroutine nssl_2mom_gs & ! real :: qhldpv(ngs), qhlsbv(ngs) ! qhlcnv(ngs),qhlevv(ngs), real :: qhlmlr(ngs), qhldsv(ngs), qhlmlrsave(ngs) - real :: qhlwet(ngs), qhldry(ngs), qhlshr(ngs) + real :: qhlwet(ngs), qhldry(ngs), qhlshr(ngs), qxwettmp ! real :: qrfz(ngs),qsfz(ngs),qhfz(ngs),qhlfz(ngs) + real :: qffz(ngs) ! real qhdpv(ngs),qhsbv(ngs) ! qhcnv(ngs),qhevv(ngs), real qhmlr(ngs),qhdsv(ngs),qhcev(ngs),qhcndv(ngs),qhevv(ngs) @@ -10792,6 +12981,7 @@ subroutine nssl_2mom_gs & real qhshh(ngs) !accreted water that remains on graupel real qhmlh(ngs) !melt water that remains on graupel real qhfzh(ngs) !water that freezes on mixed-phase graupel + real qffzf(ngs) !water that freezes on mixed-phase FD real qhlfzhl(ngs) !water that freezes on mixed-phase hail real qhmlrlg(ngs),qhlmlrlg(ngs) ! melting from the larger diameters @@ -10843,6 +13033,7 @@ subroutine nssl_2mom_gs & real qrshr(ngs) real fsw(ngs),fhw(ngs),fhlw(ngs),ffw(ngs) !liquid water fractions real fswmax(ngs),fhwmax(ngs),fhlwmax(ngs) !liquid water fractions + real ffwmax(ngs) real qhcnf(ngs) real :: qhlcnh(ngs) real qhcngh(ngs),qhcngm(ngs),qhcngl(ngs) @@ -10856,7 +13047,7 @@ subroutine nssl_2mom_gs & real ehxr(ngs),ehlr(ngs),egmr(ngs) real eri(ngs),esi(ngs),egli(ngs),eghi(ngs),efi(ngs),efis(ngs) real ehxi(ngs),ehli(ngs),egmi(ngs),ehi(ngs),ehis(ngs),ehlis(ngs) - real ers(ngs),ess(ngs),egls(ngs),eghs(ngs),efs(ngs),ehs(ngs) + real ers(ngs),ess(ngs),egls(ngs),eghs(ngs),efs(ngs),ehs(ngs),ehsfac(ngs) real ehscnv(ngs) real ehxs(ngs),ehls(ngs),egms(ngs),egmip(ngs) @@ -10915,12 +13106,13 @@ subroutine nssl_2mom_gs & real pqgli(ngs),pqghi(ngs),pqfwi(ngs) real pqgmi(ngs),pqhli(ngs) ! ,pqhxi(ngs) real pqiri(ngs),pqipi(ngs) ! pqwai(ngs), - real pqlwsi(ngs),pqlwhi(ngs),pqlwhli(ngs) + real pqlwsi(ngs),pqlwhi(ngs),pqlwhli(ngs),pqlwfi(ngs) real pqlwlghi(ngs),pqlwlghli(ngs) real pqlwlghd(ngs),pqlwlghld(ngs) + real pvhwi(ngs), pvhwd(ngs) real pvfwi(ngs), pvfwd(ngs) @@ -10932,7 +13124,7 @@ subroutine nssl_2mom_gs & real pqgld(ngs),pqghd(ngs),pqfwd(ngs) real pqgmd(ngs),pqhld(ngs) ! ,pqhxd(ngs) real pqird(ngs),pqipd(ngs) ! pqwad(ngs), - real pqlwsd(ngs),pqlwhd(ngs),pqlwhld(ngs) + real pqlwsd(ngs),pqlwhd(ngs),pqlwhld(ngs),pqlwfd(ngs) ! ! real pqxii(ngs,nhab),pqxid(ngs,nhab) ! @@ -11036,8 +13228,8 @@ subroutine nssl_2mom_gs & real arg ! gamma is a function real erbnd1, fdgt1, costhe1 real qeps - real dyi2,dzi2,cp608,bta1,cnit,dragh,dnz00,pii - real qccrit,gf4br,gf4ds,gf4p5, gf3ds, gf1ds,gr + real dyi2,dzi2,bta1,cnit,dragh,dnz00,pii ! ,cp608 + real qccrit,gf4br,gf4ds,gf4p5, gf3ds, gf1ds real gf1palp(ngs) ! for storing Gamma[1.0 + alphar] @@ -11080,7 +13272,7 @@ subroutine nssl_2mom_gs & real frcrglgm, frcrglgh, frcrglfw, frcrglgl1 real frcgmrgl, frcgmrgm, frcgmrgh, frcgmrfw, frcgmrgm1 real frcrgmgl, frcrgmgm, frcrgmgh, frcrgmfw, frcrgmgm1 - real sum, qweps, gf2a, gf4a, dqldt, dqidt, dqdt + real total, qweps, gf2a, gf4a, dqldt, dqidt, dqdt real frcghrgl, frcghrgm, frcghrgh, frcghrfw, frcghrgh1, frcrghgl real frcrghgm, frcrghgh, frcrghfw, frcrghgh1 real a1,a2,a3,a4,a5,a6 @@ -11112,9 +13304,22 @@ subroutine nssl_2mom_gs & real :: term1,term2,term3,term4 real :: qaacw ! combined qsacw-qhacw for WSM6 variation + real :: cwchtmp + real, parameter :: c1r=19.0, c2r=0.6, c3r=1.8, c4r=17.0 ! rain + real, parameter :: c1h=5.5, c2h=0.7, c3h=4.5, c4h=8.5 ! Graupel + real, parameter :: c1hl=3.7, c2hl=0.3, c3hl=9.0, c4hl=6.5, c5hl=1.0, c6hl=6.5 ! Hail +! inline functions for Newton method + real :: galpha, dgalpha + real :: a_in + logical, parameter :: newton = .false. + + + galpha(a_in) = ((4. + a_in)*(5. + a_in)*(6. + a_in))/((1. + a_in)*(2. + a_in)*(3. + a_in)) + dgalpha(a_in) = (876. + 1260.*a_in + 621.*a_in**2 + 126.*a_in**3 + 9.*a_in**4)/ & + & (36. + 132.*a_in + 193.*a_in**2 + 144.*a_in**3 + 58.*a_in**4 + 12.*a_in**5 + a_in**6) ! ! #################################################################### ! @@ -11144,6 +13349,11 @@ subroutine nssl_2mom_gs & jstag = 0 kstag = 1 + lrescalelow(:) = rescale_low_alpha + lrescalelow(lr) = rescale_low_alphar .and. rescale_low_alpha + lrescalelow(lh) = rescale_low_alphah .and. rescale_low_alpha + IF ( lf > 1 ) lrescalelow(lf) = rescale_low_alphah .and. rescale_low_alpha + IF ( lhl > 1 ) lrescalelow(lhl) = rescale_low_alphahl .and. rescale_low_alpha ! @@ -11200,7 +13410,7 @@ subroutine nssl_2mom_gs & ! constants ! - cp608 = 0.608 +! cp608 = 0.608 aradcw = -0.27544 bradcw = 0.26249e+06 cradcw = -1.8896e+10 @@ -11231,7 +13441,7 @@ subroutine nssl_2mom_gs & gf4p5 = 11.63172839656745 ! gamma(4.0+0.5) gf3ds = 3.0458730354120997 ! gamma(3.0+ds) gf1ds = 0.8863557896089221 ! gamma(1.0+ds) - gr = 9.8 + gf43rds = 0.8929795116 ! gamma(4./3.) gf53rds = 0.9027452930 ! gamma(5./3.) gf73rds = 1.190639349 ! gamma(7./3.) @@ -11261,11 +13471,18 @@ subroutine nssl_2mom_gs & vmlt = Min(xvmx(lr), 0.523599*(dmlt)**3 ) vshd = Min(xvmx(lr), 0.523599*(dshd)**3 ) - snowmeltmass = pi/6.0 * 1000. * snowmeltdia**3 ! maximum rain particle mass from melting snow (if snowmeltdia > 0) + IF ( snowmeltdia > 0.0 ) THEN + snowmeltmass = pi/6.0 * 1000. * snowmeltdia**3 ! maximum rain particle mass from melting snow (if snowmeltdia > 0) + ENDIF tdtol = 1.0e-05 tfrcbw = tfr - cbw tfrcbi = tfr - cbi + + IF ( mixedphase ) THEN + ibinhmlr = 0 + ibinhlmlr = 0 + ENDIF ! ! ! #ifdef COMMAS @@ -11417,35 +13634,25 @@ subroutine nssl_2mom_gs & do ix = nxmpb,itile pqs(1) = t00(ix,jy,kz) -! pqs(kz) = t00(ix,jy,kz) theta(1) = an(ix,jy,kz,lt) temg(1) = t0(ix,jy,kz) temcg(1) = temg(1) - tfr tqvcon = temg(1)-cbw - ltemq = (temg(1)-163.15)/fqsat+1.5 + ltemq = (temg(1)-163.15)/fqsat + 1.5 ltemq = Min( nqsat, Max(1,ltemq) ) qvs(1) = pqs(1)*tabqvs(ltemq) - qis(1) = pqs(1)*tabqis(ltemq) + IF ( iqis0 == 1 .or. temg(1) <= tfr+0.5 ) THEN + qis(1) = pqs(1)*tabqis(ltemq) + ELSE + ltemq = (tfr - 163.15)/fqsat + 1.5 + qis(1) = pqs(1)*tabqis(ltemq) + ENDIF qss(1) = qvs(1) -! IF ( jy .eq. 1 .and. ix .eq. 24 ) THEN -! write(91,*) 'kz,qv,th: ',kz,an(ix,jy,kz,lv),an(ix,jy,kz,lt),pqs(kz),tabqvs(ltemq),qvs(kz) -! ENDIF - if ( temg(1) .lt. tfr ) then -! if( qcw(kz) .le. qxmin(lc) .and. qci(kz) .gt. qxmin(li)) -! > qss(kz) = qis(kz) -! if( qcw(kz) .gt. qxmin(lc) .and. qci(kz) .gt. qxmin(li)) -! > qss(kz) = (qcw(kz)*qvs(kz) + qci(kz)*qis(kz)) / -! > (qcw(kz) + qci(kz)) - qss(1) = qis(1) - else -! IF ( an(ix,jy,kz,lv) .gt. qss(kz) ) THEN -! write(iunit,*) 'qss exceeded at ',ix,jy,kz,qss(kz),an(ix,jy,kz,lv),temg(kz) -! write(iunit,*) 'other temg = ',theta(kz)*(pinit(kz)+p2(ix,jy,kz)) -! ENDIF + qss(1) = qis(1) end if ! ishail = .false. @@ -11521,7 +13728,12 @@ subroutine nssl_2mom_gs & ltemq = (temg(mgs)-163.15)/fqsat+1.5 ltemq = Min( nqsat, Max(1,ltemq) ) qvs(mgs) = pqs(mgs)*tabqvs(ltemq) - qis(mgs) = pqs(mgs)*tabqis(ltemq) + IF ( iqis0 == 1 .or. temg(mgs) <= tfr+0.5 ) THEN + qis(mgs) = pqs(mgs)*tabqis(ltemq) + ELSE + ltemq = (tfr - 163.15)/fqsat + 1.5 + qis(mgs) = pqs(mgs)*tabqis(ltemq) + ENDIF qss(mgs) = qvs(mgs) ! es(mgs) = 6.1078e2*tabqvs(ltemq) ! eis(mgs) = 6.1078e2*tabqis(ltemq) @@ -11562,78 +13774,6 @@ subroutine nssl_2mom_gs & - scx(:,:) = 0.0 -! -! set shape parameters -! - IF ( imurain == 1 ) THEN - alpha(:,lr) = alphar - ELSEIF ( imurain == 3 ) THEN - alpha(:,lr) = xnu(lr) - ENDIF - - alpha(:,li) = xnu(li) - alpha(:,lc) = xnu(lc) - - IF ( imusnow == 1 ) THEN - alpha(:,ls) = alphas - ELSEIF ( imusnow == 3 ) THEN - alpha(:,ls) = xnu(ls) - ENDIF - - DO il = lr,lhab - do mgs = 1,ngscnt - IF ( il .ge. lg ) alpha(mgs,il) = dnu(il) - - - DO ic = lc,lhab - dab0lh(mgs,il,ic) = dab0(il,ic) ! dab0(ic,il) - dab1lh(mgs,il,ic) = dab1(il,ic) ! dab1(ic,il) - ENDDO - ENDDO - end do - - -! DO mgs = 1,ngscnt - DO il = lr,lhab - da0lx(:,il) = da0(il) - ENDDO - da0lh(:) = da0(lh) - da0lr(:) = da0(lr) - da1lr(:) = da1(lr) - da0lc(:) = da0(lc) - da1lc(:) = da1(lc) - - - IF ( lzh < 1 .or. lzhl < 1 ) THEN - rzxhlh(:) = rzhl/rz - ELSEIF ( lzh > 1 .and. lzhl > 1 ) THEN - rzxhlh(:) = 1. - ENDIF - IF ( lzr > 1 ) THEN - rzxh(:) = 1. - rzxhl(:) = 1. - ELSE - rzxh(:) = rz - rzxhl(:) = rzhl - ENDIF - - IF ( imurain == 1 .and. imusnow == 3 .and. lzr < 1 ) THEN - rzxs(:) = rzs - ELSEIF ( imurain == imusnow .or. lzr > 1 ) THEN - rzxs(:) = 1. - ENDIF - ! ENDDO - - IF ( lhl .gt. 1 ) THEN - DO mgs = 1,ngscnt - da0lhl(mgs) = da0(lhl) - ENDDO - ENDIF - - ventrx(:) = ventr - ventrxn(:) = ventrn - gf1palp(:) = gamma_sp(1.0 + alphar) ! ! set concentrations @@ -11802,6 +13942,124 @@ subroutine nssl_2mom_gs & +! +! 6th moments +! + + IF ( ipconc .ge. 6 ) THEN + zx(:,:) = 0.0 + DO il = lr,lhab + IF ( lz(il) .gt. 1 ) THEN + DO mgs = 1,ngscnt + zx(mgs,il) = Max( an(igs(mgs),jy,kgs(mgs),lz(il)), 0.0 ) + ENDDO + ENDIF + ENDDO + + ENDIF + + IF ( ipconc .ge. 6 ) THEN + + IF ( lz(lr) .lt. 1 ) THEN + g1x(:,lr) = (6.0 + alphar)*(5.0 + alphar)*(4.0 + alphar)/ & + & ((3.0 + alphar)*(2.0 + alphar)*(1.0 + alphar)) + + + DO mgs = 1,ngscnt + IF ( cx(mgs,lr) .gt. 0.0 .and. qx(mgs,lr) .gt. qxmin(lr) ) THEN + + vr = rho0(mgs)*qx(mgs,lr)/(1000.*cx(mgs,lr)) + IF ( lzr < 1 ) THEN + IF ( imurain == 3 ) THEN + zx(mgs,lr) = 3.6476*(rnu+2.0)*cx(mgs,lr)*vr**2/(rnu+1.0) + ELSE ! imurain == 1 + zx(mgs,lr) = 3.6476*g1x(mgs,lr)*cx(mgs,lr)*vr**2 + ENDIF + ENDIF + + ENDIF + ENDDO + ENDIF + + ENDIF + + + scx(:,:) = 0.0 +! +! set shape parameters +! + if ( ndebug .gt. 0 .and. my_rank>=0 ) write(0,*) my_rank, 'ICEZVD_GS: dbg = set alpha' + IF ( imurain == 1 ) THEN + alpha(:,lr) = alphar + ELSEIF ( imurain == 3 ) THEN + alpha(:,lr) = xnu(lr) + ENDIF + + alpha(:,li) = xnu(li) + alpha(:,lc) = xnu(lc) + + IF ( imusnow == 1 ) THEN + alpha(:,ls) = alphas + ELSEIF ( imusnow == 3 ) THEN + alpha(:,ls) = xnu(ls) + ENDIF + + if ( ndebug .gt. 0 .and. my_rank>=0 ) write(0,*) my_rank, 'ICEZVD_GS: dbg = set dab' + + DO il = lr,lhab + do mgs = 1,ngscnt + IF ( il .ge. lg ) alpha(mgs,il) = dnu(il) + + + DO ic = lc,lhab + dab0lh(mgs,il,ic) = dab0(il,ic) ! dab0(ic,il) + dab1lh(mgs,il,ic) = dab1(il,ic) ! dab1(ic,il) + ENDDO + end do + ENDDO + + +! DO mgs = 1,ngscnt + DO il = lr,lhab + da0lx(:,il) = da0(il) + ENDDO + da0lh(:) = da0(lh) + da0lr(:) = da0(lr) + da1lr(:) = da1(lr) + da0lc(:) = da0(lc) + da1lc(:) = da1(lc) + + if ( ndebug .gt. 0 .and. my_rank>=0 ) write(0,*) my_rank, 'ICEZVD_GS: dbg = set rz' + + IF ( lzh < 1 .or. lzhl < 1 ) THEN + rzxhlh(:) = rzhl/rz + ELSEIF ( lzh > 1 .and. lzhl > 1 ) THEN + rzxhlh(:) = 1. + ENDIF + IF ( lzr > 1 ) THEN + rzxh(:) = 1. + rzxhl(:) = 1. + ELSE + rzxh(:) = rz + rzxhl(:) = rzhl + ENDIF + + IF ( imurain == 1 .and. imusnow == 3 .and. lzr < 1 ) THEN + rzxs(:) = rzs + ELSEIF ( imurain == imusnow .or. lzr > 1 ) THEN + rzxs(:) = 1. + ENDIF + ! ENDDO + + IF ( lhl .gt. 1 ) THEN + DO mgs = 1,ngscnt + da0lhl(mgs) = da0(lhl) + ENDDO + ENDIF + + ventrx(:) = ventr + ventrxn(:) = ventrn + gf1palp(:) = gamma_sp(1.0 + alphar) ! ! set factors @@ -11840,6 +14098,7 @@ subroutine nssl_2mom_gs & tmp = qx(mgs,li)+qx(mgs,ls)+qx(mgs,lh) IF ( lhl > 1 ) tmp = tmp + qx(mgs,lhl) + IF ( lf > 1 ) tmp = tmp + qx(mgs,lf) cvm = cv+cvv*qx(mgs,lv)+cpl*(qx(mgs,lc)+qx(mgs,lr)) & +cpigb*(tmp) @@ -11962,6 +14221,7 @@ subroutine nssl_2mom_gs & IF ( lhl .gt. 1 ) THEN xdn(mgs,lhl) = xdn0(lhl) + xdntmp(mgs,lhl) = xdn0(lhl) IF ( lvol(lhl) .gt. 1 ) THEN IF ( vx(mgs,lhl) .gt. 0.0 .and. qx(mgs,lhl) .gt. qxmin(lhl) ) THEN @@ -11973,6 +14233,7 @@ subroutine nssl_2mom_gs & xdn(mgs,lhl) = Min( dnmx, Max( xdnmn(lhl), rho0(mgs)*qx(mgs,lhl)/vx(mgs,lhl) ) ) vx(mgs,lhl) = rho0(mgs)*qx(mgs,lhl)/xdn(mgs,lhl) + xdntmp(mgs,lhl) = xdn(mgs,lhl) ELSEIF ( vx(mgs,lhl) == 0.0 .and. qx(mgs,lhl) .gt. qxmin(lhl) ) THEN ! if volume is zero, need to initialize the default value @@ -11986,33 +14247,851 @@ subroutine nssl_2mom_gs & end do + IF ( ipconc == 5 .and. imydiagalpha == 2 ) THEN - IF ( imurain == 3 ) THEN - IF ( lzr > 1 ) THEN - alphashr = 0.0 - alphamlr = -2.0/3.0 - ELSE - alphashr = xnu(lr) - alphamlr = xnu(lr) - ENDIF -! massfacshr = ( (2. + 3.*(1. +alphashr) )/( 3.*(1. + alphashr) ) )**(1./3.) ! this is the diameter factor -! massfacmlr = ( (2. + 3.*(1. +alphamlr) )/( 3.*(1. + alphamlr) ) )**(1./3.) - massfacshr = ( (2. + 3.*(1. +alphashr) )**3/( 3.*(1. + alphashr) ) ) ! this is the mass or volume factor - massfacmlr = ( (2. + 3.*(1. +alphamlr) )**3/( 3.*(1. + alphamlr) ) ) - ELSEIF ( imurain == 1 ) THEN - IF ( lzr > 1 ) THEN - alphashr = 4.0 - alphamlr = 4.0 - ELSE - alphashr = alphar - alphamlr = alphar - ENDIF -! massfacshr = (3.0 + alphashr)*((3.+alphashr)*(2.+alphashr)*(1. + alphashr) )**(-1./3.) ! this is the diameter factor -! massfacmlr = (3.0 + alphamlr)*((3.+alphamlr)*(2.+alphamlr)*(1. + alphamlr) )**(-1./3.) + cwchtmp = ((3. + dnu(lh))*(2. + dnu(lh))*(1.0 + dnu(lh)))**(-1./3.) + + DO mgs = 1,ngscnt + !IF ( igs(mgs) == 19 ) write(0,*) 'k,qr,qh,cr,ch = ',kgs(mgs),qx(mgs,lr),cx(mgs,lr),qx(mgs,lh),cx(mgs,lh) + IF ( qx(mgs,lr) .gt. qxmin(lr) .and. cx(mgs,lr) > cxmin ) THEN + xv(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(xdn(mgs,lr)*cx(mgs,lr)) ! + xdia(mgs,lr,3) = (xv(mgs,lr)*6.0*cwc1)**(1./3.) + ! alpha(mgs,lr) = Min(alphamax, c1r*tanh(c2r*(xdia(mgs,lr,3)*1000. - c3r)) + c4r) + ! IF ( igs(mgs) == 19 ) write(0,*) 'imy: i,k,alpr,xdia = ',igs(mgs),kgs(mgs),alpha(mgs,lr),xdia(mgs,lr,3)*1000. + + ! M&M-C 2010: + tmp = 4. + alphar + i = Int(dgami*(tmp)) + del = tmp - dgam*i + x = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami + + tmp = 1. + alphar + i = Int(dgami*(tmp)) + del = tmp - dgam*i + y = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami + + tmp = (x/y)**(1./3.)*xdia(mgs,lr,3)*cwchtmp + + alpha(mgs,lr) = Min(15., 11.8*(1000.*tmp - 0.7)**2 + 2.) + ENDIF + IF ( qx(mgs,lh) .gt. qxmin(lh) .and. cx(mgs,lh) > cxmin ) THEN +! MY 2005: + xv(mgs,lh) = rho0(mgs)*qx(mgs,lh)/(xdn(mgs,lh)*cx(mgs,lh)) ! + xdia(mgs,lh,3) = (xv(mgs,lh)*6.*piinv)**(1./3.) ! mwfac*xdia(mgs,lh,1) ! (xv(mgs,lh)*cwc0*6.0)**(1./3.) +! alpha(mgs,lh) = Min(alphamax, c1h*tanh(c2h*(xdia(mgs,lh,3)*1000. - c3h)) + c4h) + + ! M&M-C 2010: + tmp = 4. + dnu(lh) + i = Int(dgami*(tmp)) + del = tmp - dgam*i + x = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami + + tmp = 1. + dnu(lh) + i = Int(dgami*(tmp)) + del = tmp - dgam*i + y = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami + + tmp = (x/y)**(1./3.)*xdia(mgs,lh,3)*cwchtmp + + alpha(mgs,lh) = Min(15., 11.8*(1000.*tmp - 0.7)**2 + 2.) + ! alphan(mgs,lh) = alpha(mgs,lh) + + ! IF ( igs(mgs) == 19 ) write(0,*) 'imy: i,k,alph,xdia = ',igs(mgs),kgs(mgs),alpha(mgs,lh),xdia(mgs,lh,3)*1000. + il = lh + DO ic = lc,lh-1 ! lhab + i = Nint( alpha(mgs,il)*dqiacralphainv ) + IF ( ic == lc .or. ic == li .or. ic == ls .or. (ic == lr .and. imurain == 3) ) THEN + alp = (3.*alpha(mgs,ic) + 2.) + j = Nint( (3.*alpha(mgs,ic) + 2.)*dqiacralphainv ) + ELSE ! IF ( ic == lr .and. imurain == 1 ) ! rain + alp = alpha(mgs,ic) + j = Nint( alpha(mgs,ic)*dqiacralphainv ) + ENDIF + + dab0lh(mgs,ic,il) = dab0lu(j,i,ic,il) + dab1lh(mgs,ic,il) = dab1lu(j,i,ic,il) + dab0lh(mgs,il,ic) = dab0lu(i,j,il,ic) + dab1lh(mgs,il,ic) = dab1lu(i,j,il,ic) + ENDDO + ENDIF +! alpha(:,lr) = 0. ! 10. +! alpha(:,lh) = 0. ! 10. + IF ( lhl > 0 ) THEN + IF ( qx(mgs,lhl) .gt. qxmin(lhl) .and. cx(mgs,lhl) > cxmin ) THEN + xv(mgs,lhl) = rho0(mgs)*qx(mgs,lhl)/(xdn(mgs,lhl)*cx(mgs,lhl)) ! + xdia(mgs,lhl,3) = (xv(mgs,lhl)*6.*piinv)**(1./3.) + IF ( xdia(mgs,lhl,3) < 0.008 ) THEN + alpha(mgs,lhl) = Min(alphamax, c1hl*tanh(c2hl*(xdia(mgs,lhl,3)*1000. - c3hl)) + c4hl) + ELSE + alpha(mgs,lhl) = Min(alphamax, c5hl*xdia(mgs,lhl,3)*1000. + c6hl) + ENDIF + + il = lhl + DO ic = lc,lh-1 ! lhab + i = Nint( alpha(mgs,il)*dqiacralphainv ) + IF ( ic == lc .or. ic == li .or. ic == ls .or. (ic == lr .and. imurain == 3) ) THEN + alp = (3.*alpha(mgs,ic) + 2.) + j = Nint( (3.*alpha(mgs,ic) + 2.)*dqiacralphainv ) + ELSE ! IF ( ic == lr .and. imurain == 1 ) ! rain + alp = alpha(mgs,ic) + j = Nint( alpha(mgs,ic)*dqiacralphainv ) + ENDIF + + dab0lh(mgs,ic,il) = dab0lu(j,i,ic,il) + dab1lh(mgs,ic,il) = dab1lu(j,i,ic,il) + dab0lh(mgs,il,ic) = dab0lu(i,j,il,ic) + dab1lh(mgs,il,ic) = dab1lu(i,j,il,ic) + ENDDO + + ENDIF + ENDIF + + + + ENDDO + ENDIF + + + IF ( imurain == 3 ) THEN + IF ( lzr > 1 ) THEN + alphashr = 0.0 + alphamlr = -2.0/3.0 + alphasmlr = -2.0/3.0 + ELSE + alphashr = xnu(lr) + alphamlr = xnu(lr) + alphasmlr = xnu(lr) + ENDIF +! massfacshr = ( (2. + 3.*(1. +alphashr) )/( 3.*(1. + alphashr) ) )**(1./3.) ! this is the diameter factor +! massfacmlr = ( (2. + 3.*(1. +alphamlr) )/( 3.*(1. + alphamlr) ) )**(1./3.) + massfacshr = ( (2. + 3.*(1. +alphashr) )**3/( 3.*(1. + alphashr) ) ) ! this is the mass or volume factor + massfacmlr = ( (2. + 3.*(1. +alphamlr) )**3/( 3.*(1. + alphamlr) ) ) + ELSEIF ( imurain == 1 ) THEN + IF ( lzr > 1 ) THEN + alphashr = 4.0 + alphamlr = 4.0 + alphasmlr = alphasmlr0 + ELSE + alphashr = alphar + alphamlr = alphar + alphasmlr = alphar + ENDIF +! massfacshr = (3.0 + alphashr)*((3.+alphashr)*(2.+alphashr)*(1. + alphashr) )**(-1./3.) ! this is the diameter factor +! massfacmlr = (3.0 + alphamlr)*((3.+alphamlr)*(2.+alphamlr)*(1. + alphamlr) )**(-1./3.) massfacshr = (3.0 + alphashr)**3/((3.+alphashr)*(2.+alphashr)*(1. + alphashr) ) ! this is the mass or volume factor massfacmlr = (3.0 + alphamlr)**3/((3.+alphamlr)*(2.+alphamlr)*(1. + alphamlr) ) ENDIF +! Find shape parameter rain + + g1shr = 1.0 + g1mlr = 1.0 + g1smlr = 1.0 + +! CALL cld_cpu('Z-MOMENT-1') + + IF ( ipconc >= 6 ) THEN + + ! set base g1x in case rain is not 3-moment + IF ( ipconc >= 6 .and. imurain == 3 ) THEN + il = lr + DO mgs = 1,ngscnt +! g1x(mgs,il) = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + g1x(mgs,il) = (alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)) + ENDDO + ENDIF + + IF (lzr > 1 ) THEN + IF ( imurain == 3 ) THEN + g1shr = (alphashr+2.0)/((alphashr+1.0)) + g1mlr = (alphamlr+2.0)/((alphamlr+1.0)) + g1smlr = (alphasmlr+2.0)/((alphasmlr+1.0)) + ELSEIF ( imurain == 1 ) THEN +! g1shr = 36.*(6.0 + alphashr)*(5.0 + alphashr)*(4.0 + alphashr)/ & +! & (pi**2*(3.0 + alphashr)*(2.0 + alphashr)*(1.0 + alphashr)) + g1shr = (6.0 + alphashr)*(5.0 + alphashr)*(4.0 + alphashr)/ & + & ((3.0 + alphashr)*(2.0 + alphashr)*(1.0 + alphashr)) +! g1mlr = 36.*(6.0 + alphamlr)*(5.0 + alphamlr)*(4.0 + alphamlr)/ & +! & (pi**2*(3.0 + alphamlr)*(2.0 + alphamlr)*(1.0 + alphamlr)) + g1mlr = (6.0 + alphamlr)*(5.0 + alphamlr)*(4.0 + alphamlr)/ & + & ((3.0 + alphamlr)*(2.0 + alphamlr)*(1.0 + alphamlr)) + g1smlr = (6.0 + alphasmlr)*(5.0 + alphasmlr)*(4.0 + alphasmlr)/ & + & ((3.0 + alphasmlr)*(2.0 + alphasmlr)*(1.0 + alphasmlr)) + ENDIF + ENDIF + + IF ( lzr > 1 .and. imurain == 3 ) THEN ! { RAIN SHAPE PARAM + + +! CALL cld_cpu('Z-MOMENT-1r') + il = lr + DO mgs = 1,ngscnt + + + IF ( iresetmoments == 1 .or. iresetmoments == il .or. iresetmoments == -1 ) THEN ! .or. qx(mgs,il) <= qxmin(il) THEN + IF ( zx(mgs,il) <= zxmin ) THEN ! .and. qx(mgs,il) > 0.05e-3 THEN +!! write(91,*) 'zx=0; qx,cx = ',1000.*qx(mgs,il),cx(mgs,il) + qx(mgs,il) = 0.0 + cx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + ELSEIF ( iresetmoments == -1 .and. qx(mgs,il) < qxmin(il) ) THEN + zx(mgs,il) = 0.0 + cx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + + qx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + ELSEIF ( cx(mgs,il) <= cxmin .and. iresetmoments /= -1 ) THEN ! .and. qx(mgs,il) > 0.05e-3 THEN + + qx(mgs,lv) = qx(mgs,lv) + qx(mgs,il) + zx(mgs,lr) = 0.0 + qx(mgs,lr) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),lr) + an(igs(mgs),jgs,kgs(mgs),lr) = qx(mgs,lr) + an(igs(mgs),jgs,kgs(mgs),lz(lr)) = zx(mgs,lr) + ENDIF + ENDIF + + IF ( .false. .and. zx(mgs,il) <= zxmin .and. cx(mgs,il) <= cxmin ) THEN + zx(mgs,il) = 0.0 + cx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + + qx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + ENDIF + + IF ( qx(mgs,lr) .gt. qxmin(lr) ) THEN + + xv(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(xdn(mgs,lr)*Max(1.0e-11,cx(mgs,lr))) + IF ( xv(mgs,lr) .gt. xvmx(lr) ) THEN +! xv(mgs,lr) = xvmx(lr) +! cx(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(xvmx(lr)*xdn(mgs,lr)) + ELSEIF ( xv(mgs,lr) .lt. xvmn(lr) ) THEN + xv(mgs,lr) = xvmn(lr) + cx(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(xvmn(lr)*xdn(mgs,lr)) + ENDIF + + IF ( zx(mgs,il) > 0.0 .and. cx(mgs,il) <= 0.0 ) THEN +! have mass and reflectivity but no concentration, so set concentration, using default alpha + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + z = zx(mgs,il) + qr = qx(mgs,il) + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/(z*xdn(mgs,lr)**2) +! an(igs(mgs),jgs,kgs(mgs),ln(il)) = zx(mgs,il) + ELSEIF ( zx(mgs,il) <= zxmin .and. cx(mgs,il) > 0.0 ) THEN +! have mass and concentration but no reflectivity, so set reflectivity, using default alpha + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + chw = cx(mgs,il) + qr = qx(mgs,il) + zx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/(xdn(mgs,lr)**2*chw) + an(igs(mgs),jgs,kgs(mgs),lz(lr)) = zx(mgs,lr) + + ELSEIF ( zx(mgs,il) <= zxmin .and. cx(mgs,il) <= 0.0 ) THEN +! How did this happen? + ! set values according to dBZ of -10, or Z = 0.1 +! 0.1 = 1.e18*0.224*an(ix,jy,kz,lzh)*(hwdn/rwdn)**2 + zx(mgs,il) = 1.e-19/0.224*(xdn0(lr)/xdn0(il))**2 + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + z = zx(mgs,il) + qr = qx(mgs,il) + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/(z*1000.*1000) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + ENDIF + + IF ( zx(mgs,lr) > 0.0 ) THEN + xv(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(1000.*cx(mgs,lr)) + vr = xv(mgs,lr) + qr = qx(mgs,lr) + nrx = cx(mgs,lr) + z = zx(mgs,lr) + +! xv = (db(1,kz)*a(1,1,kz,lr))**2/(a(1,1,kz,lnr)) +! rd = z*(pi/6.*1000.)**2/xv + +! determine shape parameter alpha by iteration + IF ( z .gt. 0.0 ) THEN +! alpha(mgs,lr) = 3. + alp = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/(z*pi**2) - 1. + DO i = 1,20 + IF ( Abs(alp - alpha(mgs,lr)) .lt. 0.01 ) EXIT + alpha(mgs,lr) = Max( rnumin, Min( rnumax, alp ) ) + alp = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/(z*pi**2) - 1. + alp = Max( rnumin, Min( rnumax, alp ) ) + ENDDO + +! check for artificial breakup (rain larger than allowed max size) + IF ( (xv(mgs,il) .gt. xvmx(il) .or. (ioldlimiter >= 2 .and. xv(mgs,il) .gt. xvmx(il)/8.) )) THEN + tmp = cx(mgs,il) + IF ( ioldlimiter >= 2 ) THEN ! MY-style active breakup + x = (6.*rho0(mgs)*qx(mgs,il)/(pi*xdn(mgs,il)*cx(mgs,il)))**(1./3.) + x1 = Max(0.0e-3, x - 3.0e-3) + x2 = Max(0.5, x/6.0e-3) + x3 = x2**3 + cx(mgs,il) = cx(mgs,il)*Max((1.+2.222e3*x1**2), x3) + xv(mgs,il) = xv(mgs,il)/Max((1.+2.222e3*x1**2), x3) + ELSE ! simple cutoff + xv(mgs,il) = Min( xvmx(il), Max( xvmn(il),xv(mgs,il) ) ) + xmas(mgs,il) = xv(mgs,il)*xdn(mgs,il) + cx(mgs,il) = rho0(mgs)*qx(mgs,il)/(xmas(mgs,il)) + ENDIF + !xmas(mgs,il) = xv(mgs,il)*xdn(mgs,il) + !cx(mgs,il) = rho0(mgs)*qx(mgs,il)/(xmas(mgs,il)) + + IF ( tmp < cx(mgs,il) ) THEN ! breakup + + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + zx(mgs,il) = zx(mgs,il) + g1*(rho0(mgs)/xdn(mgs,il))**2*( (qx(mgs,il)/tmp)**2 * (tmp-cx(mgs,il)) ) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + vr = xv(mgs,lr) + qr = qx(mgs,lr) + nrx = cx(mgs,lr) + z = zx(mgs,lr) + + +! determine shape parameter alpha by iteration + alp = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/(z*pi**2) - 1. + DO i = 1,20 + IF ( Abs(alp - alpha(mgs,lr)) .lt. 0.01 ) EXIT + alpha(mgs,lr) = Max( rnumin, Min( rnumax, alp ) ) + alp = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/(z*pi**2) - 1. + alp = Max( rnumin, Min( rnumax, alp ) ) + ENDDO + + + ENDIF + ENDIF + +! +! Check whether the shape parameter is at or less than the minimum, and if it is, reset the +! concentration or reflectivity to match (prevents reflectivity from being out of balance with Q and N) +! + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + IF ( .true. .and. (alpha(mgs,il) <= rnumin .or. alp == rnumin .or. alp == rnumax) ) THEN + + IF ( rescale_high_alpha .and. alp >= rnumax - 0.01 ) THEN ! reset c at high alpha to prevent growth in Z + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/z*(1./(xdn(mgs,il)))**2 + an(igs(mgs),jy,kgs(mgs),ln(il)) = cx(mgs,il) + + ELSEIF ( rescale_low_alphar .and. alp <= rnumin ) THEN + z = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/((alpha(mgs,lr)+1.0)*pi**2) + zx(mgs,il) = z + an(igs(mgs),jy,kgs(mgs),lz(il)) = zx(mgs,il) + ENDIF + ENDIF + + ! set g1x to use as G factor later. If alpha is in the range ( rnumin < alpha < rnumax ), then + ! this will be the same as computing G from alpha. If alpha = rnumax, however, it probably means that + ! the moments are not matched correctly, so we compute G from the moments instead so that the dZ/dt rates + ! stay consistent with dN/dt and dq/dt. + IF ( alp >= rnumax - 0.01 ) THEN +! g1x(mgs,il) = 6**2*zx(mgs,il)/(cx(mgs,il)*(pi*xv(mgs,lr))**2) +! g1x(mgs,il) = xdn(mgs,il)*zx(mgs,il)*cx(mgs,il)/((rho0(mgs)*qx(mgs,lr))**2) + g1x(mgs,il) = (pi*xdn(mgs,il))**2*zx(mgs,il)*cx(mgs,il)/((6.*rho0(mgs)*qx(mgs,il))**2) + ELSE + g1x(mgs,il) = g1 + ENDIF + + tmp = alpha(mgs,lr) + 4./3. + i = Int(dgami*(tmp)) + del = tmp - dgam*i + x = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami + + tmp = alpha(mgs,lr) + 1. + i = Int(dgami*(tmp)) + del = tmp - dgam*i + y = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami + + gf1palp(mgs) = y + +! ventrx(mgs) = Gamma_sp(alpha(mgs,lr) + 4./3.)/(alpha(mgs,lr) + 1.)**(1./3.)/Gamma_sp(alpha(mgs,lr) + 1.) + ventrx(mgs) = x/(y*(alpha(mgs,lr) + 1.)**(1./3.)) + + IF ( imurain == 3 .and. izwisventr == 2 ) THEN + + tmp = alpha(mgs,lr) + 1.5 + br/6. + i = Int(dgami*(tmp)) + del = tmp - dgam*i + x = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami + +! ventrx(mgs) = Gamma_sp(alpha(mgs,lr) + 1.5 + br/6.)/Gamma_sp(alpha(mgs,lr) + 1.) + ventrxn(mgs) = x/(y*(alpha(mgs,lr) + 1.)**((1.+br)/6. + 1./3.)) + +! This whole section is imurain == 3, so this branch never runs +! ELSEIF ( imurain == 1 .and. iferwisventr == 2 ) THEN +! +! tmp = alpha(mgs,lr) + 2.5 + br/2. +! i = Int(dgami*(tmp)) +! del = tmp - dgam*i +! x = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami +! +!! ventrx(mgs) = Gamma_sp(alpha(mgs,lr) + 1.5 + br/6.)/Gamma_sp(alpha(mgs,lr) + 1.) +! ventrxn(mgs) = x/y + + + ENDIF + + ENDIF + ENDIF + + ENDIF + + ENDDO +! CALL cld_cpu('Z-MOMENT-1r') + ENDIF ! } + + ENDIF ! ipconc >= 6 + +! Find shape parameters for graupel and hail + IF ( ipconc .ge. 6 ) THEN + + DO il = lr,lhab + + ! set base values of g1x + IF ( (.not. ( il == lr .and. imurain == 3 )) .and. ( il == lr .or. il == lh .or. il == lhl .or. il == lf ) ) THEN + DO mgs = 1,ngscnt + g1x(mgs,il) = (6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))) + ENDDO + ENDIF + + IF ( lz(il) .gt. 1 .and. ( .not. ( il == lr .and. imurain == 3 )) ) THEN + + DO mgs = 1,ngscnt + + + IF ( iresetmoments == 1 .or. iresetmoments == il .or. iresetmoments == -1 ) THEN ! .or. qx(mgs,il) <= qxmin(il) ) THEN + IF ( zx(mgs,il) <= zxmin ) THEN ! .and. qx(mgs,il) > 0.05e-3 ) THEN +!! write(91,*) 'zx=0; qx,cx = ',1000.*qx(mgs,il),cx(mgs,il) + qx(mgs,il) = 0.0 + cx(mgs,il) = 0.0 + zx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + ELSEIF ( iresetmoments == -1 .and. qx(mgs,il) < qxmin(il) ) THEN + zx(mgs,il) = 0.0 + cx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + + qx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + ELSEIF ( cx(mgs,il) <= cxmin .and. iresetmoments /= -1 ) THEN ! .and. qx(mgs,il) > 0.05e-3 ) THEN + qx(mgs,lv) = qx(mgs,lv) + qx(mgs,il) + zx(mgs,il) = 0.0 + cx(mgs,il) = 0.0 + qx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + ENDIF + ENDIF + + IF ( zx(mgs,il) <= zxmin .and. cx(mgs,il) <= cxmin ) THEN + zx(mgs,il) = 0.0 + cx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + + qx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + ENDIF + + IF ( qx(mgs,il) .gt. qxmin(il) ) THEN + + xv(mgs,il) = rho0(mgs)*qx(mgs,il)/(xdn(mgs,il)*Max(1.0e-9,cx(mgs,il))) + xmas(mgs,il) = xv(mgs,il)*xdn(mgs,il) + + IF ( xv(mgs,il) .lt. xvmn(il) ) THEN + xv(mgs,il) = Min( xvmx(il), Max( xvmn(il),xv(mgs,il) ) ) + xmas(mgs,il) = xv(mgs,il)*xdn(mgs,il) + cx(mgs,il) = rho0(mgs)*qx(mgs,il)/(xmas(mgs,il)) + ENDIF + + IF ( zx(mgs,il) > 0.0 .and. cx(mgs,il) <= 0.0 ) THEN +! have mass and reflectivity but no concentration, so set concentration, using default alpha + g1 = (6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))) + z = zx(mgs,il) + qr = qx(mgs,il) +! cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/z + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(6.*qr)**2/(z*(pi*xdn(mgs,il))**2) + + ELSEIF ( zx(mgs,il) <= zxmin .and. cx(mgs,il) > cxmin ) THEN +! have mass and concentration but no reflectivity, so set reflectivity, using default alpha +! g1 = (6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & +! & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))) + chw = cx(mgs,il) + qr = qx(mgs,il) +! zx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/chw +! zx(mgs,il) = Min(zxmin*1.1, g1*dn(igs(mgs),jy,kgs(mgs))**2*(6.*qr)**2/(chw*(pi*xdn(mgs,il))**2) ) + g1 = (6.0 + alphamax)*(5.0 + alphamax)*(4.0 + alphamax)/ & + & ((3.0 + alphamax)*(2.0 + alphamax)*(1.0 + alphamax)) + zx(mgs,il) = Max(zxmin*1.1, g1*dn(igs(mgs),jy,kgs(mgs))**2*(6*qr)**2/(chw*(pi*xdn(mgs,il))**2) ) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + ELSEIF ( zx(mgs,il) <= zxmin .and. cx(mgs,il) <= 0.0 ) THEN +! How did this happen? + ! set values according to dBZ of -10, or Z = 0.1 +! 0.1 = 1.e18*0.224*an(ix,jy,kz,lzh)*(hwdn/rwdn)**2 + zx(mgs,il) = 1.e-19/0.224*(xdn0(lr)/xdn0(il))**2 + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + g1 = (6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))) + z = zx(mgs,il) + qr = qx(mgs,il) +! cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/z + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(6.*qr)**2/(z*(pi*xdn(mgs,il))**2) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + ELSE + + chw = cx(mgs,il) + qr = qx(mgs,il) + z = zx(mgs,il) + + IF ( zx(mgs,il) .gt. 0. ) THEN + +! rdi = z*(pi/6.*1000.)**2*chw/((rho0(mgs)*qr)**2) + rdi = z*(pi/6.*xdn(mgs,il))**2*chw/((rho0(mgs)*qr)**2) + +! alp = 1.e18*(6.+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ +! : ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rdi) - 1.0 + alp = (6.0+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ & + & ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rdi) - 1.0 +! print*,'kz, alp, alpha(mgs,il) = ',kz,alp,alpha(mgs,il),rdi,z,xv + alp = Max( alphamin, Min( alphamax, alp ) ) + + IF ( newton ) THEN + DO i = 1,10 + IF ( Abs(alp - alpha(mgs,il)) .lt. 0.01 ) EXIT + alpha(mgs,il) = Max( alphamin, Min( alphamax, alp ) ) + alp = alp + ( galpha(alp) - rdi )/dgalpha(alp) + alp = Max( alphamin, Min( alphamax, alp ) ) + ENDDO + + ELSE + DO i = 1,10 +! IF ( 100.*Abs(alp - alpha(mgs,il))/(Abs(alpha(mgs,il))+1.e-5) .lt. 1. ) EXIT + IF ( Abs(alp - alpha(mgs,il)) .lt. 0.01 ) EXIT + alpha(mgs,il) = Max( alphamin, Min( alphamax, alp ) ) +! alp = 1.e18*(6.+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ +! : ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rdi) - 1.0 + alp = (6.+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ & + & ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rdi) - 1.0 +! print*,'i,alp = ',i,alp + alp = Max( alphamin, Min( alphamax, alp ) ) + ENDDO + ENDIF + + +! check for artificial breakup (graupel/hail larger than allowed max size) + IF ( imaxdiaopt == 1 ) THEN + xvbarmax = xvmx(il) + ELSEIF ( imaxdiaopt == 2 ) THEN ! test against maximum mass diameter + xvbarmax = xvmx(il) /((3. + alpha(mgs,il))**3/((3. + alpha(mgs,il))*(2. + alpha(mgs,il))*(1. + alpha(mgs,il)))) + ELSEIF ( imaxdiaopt == 3 ) THEN ! test against mass-weighted diameter + xvbarmax = xvmx(il) /((4. + alpha(mgs,il))**3/((3. + alpha(mgs,il))*(2. + alpha(mgs,il))*(1. + alpha(mgs,il)))) + ELSE + xvbarmax = xvmx(il) + ENDIF + + IF ( xv(mgs,il) .gt. xvbarmax .or. (il == lr .and. ioldlimiter >= 2 .and. xv(mgs,il) .gt. xvmx(il)/8.)) THEN + tmp = cx(mgs,il) + IF( ioldlimiter >= 2 .and. il == lr) THEN ! MY-style drop limiter for rain + x = (6.*rho0(mgs)*qx(mgs,il)/(pi*xdn(mgs,il)*cx(mgs,il)))**(1./3.) + x1 = Max(0.0e-3, x - 3.0e-3) + x2 = Max(0.5, x/6.0e-3) + x3 = x2**3 + cx(mgs,il) = cx(mgs,il)*Max((1.+2.222e3*x1**2), x3) + xv(mgs,il) = xv(mgs,il)/Max((1.+2.222e3*x1**2), x3) + ELSE + xv(mgs,il) = Min( xvbarmax, Max( xvmn(il),xv(mgs,il) ) ) + xmas(mgs,il) = xv(mgs,il)*xdn(mgs,il) + cx(mgs,il) = rho0(mgs)*qx(mgs,il)/(xmas(mgs,il)) + ENDIF + IF ( tmp < cx(mgs,il) ) THEN ! artificial breakup has happened, so need to adjust reflectivity and find new shape parameter + g1 = 36.*(6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))*pi**2) + zx(mgs,il) = zx(mgs,il) + g1*(rho0(mgs)/xdn(mgs,il))**2*( (qx(mgs,il)/tmp)**2 * (tmp-cx(mgs,il)) ) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + chw = cx(mgs,il) + qr = qx(mgs,il) + z = zx(mgs,il) + + rdi = z*(pi/6.*xdn(mgs,il))**2*chw/((rho0(mgs)*qr)**2) + alp = (6.0+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ & + & ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rdi) - 1.0 + DO i = 1,10 + IF ( Abs(alp - alpha(mgs,il)) .lt. 0.01 ) EXIT + alpha(mgs,il) = Max( alphamin, Min( alphamax, alp ) ) + alp = (6.+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ & + & ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rdi) - 1.0 + alp = Max( alphamin, Min( alphamax, alp ) ) + ENDDO + + + ENDIF + ENDIF + +! +! Check whether the shape parameter is at or less than the minimum, and if it is, reset the +! concentration or reflectivity to match (prevents reflectivity from being out of balance with Q and N) +! + g1 = (6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))) + + IF ( ( lrescalelow(il) .or. rescale_high_alpha ) .and. & + & ( alpha(mgs,il) <= alphamin .or. alp == alphamin .or. alp == alphamax ) ) THEN + + + + IF ( rescale_high_alpha .and. alp >= alphamax - 0.01 ) THEN ! reset c at high alpha to prevent growth in Z + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/z*(6./(pi*xdn(mgs,il)))**2 + an(igs(mgs),jy,kgs(mgs),ln(il)) = cx(mgs,il) + + ELSEIF ( lrescalelow(il) .and. alp <= alphamin .and. .not. (il == lh .and. icvhl2h > 0 ) .and. & + .not. ( il == lr .and. .not. rescale_low_alphar ) ) THEN ! alpha = alphamin, so reset Z to prevent growth in C + wtest = .false. + IF ( irescalerainopt == 0 ) THEN + wtest = .false. + ELSEIF ( irescalerainopt == 1 ) THEN + wtest = qx(mgs,lc) > qxmin(lc) + ELSEIF ( irescalerainopt == 2 ) THEN + wtest = qx(mgs,lc) > qxmin(lc) .and. wvel(mgs) < rescale_wthresh + ELSEIF ( irescalerainopt == 3 ) THEN + wtest = temcg(mgs) > rescale_tempthresh .and. qx(mgs,lc) > qxmin(lc) .and. wvel(mgs) < rescale_wthresh + ENDIF + + IF ( il == lr .and. ( wtest ) ) THEN +! IF ( temcg(mgs) > 0.0 .and. il == lr .and. qx(mgs,lc) > qxmin(lc) ) THEN + ! certain situations where rain number is adjusted instead of Z. Helps avoid rain being 'zapped' by autoconverted + ! drops (i.e., favor preserving Z when alpha tries to go negative) + chw = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/z*(6./(pi*xdn(mgs,il)))**2 ! g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/z1 + cx(mgs,il) = chw + an(igs(mgs),jy,kgs(mgs),ln(il)) = chw + ELSE + + ! Usual resetting of reflectivity moment to force consisntency between Q, N, Z, and alpha when alpha = alphamin + z1 = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/chw + z = z1*(6./(pi*xdn(mgs,il)))**2 + zx(mgs,il) = z + an(igs(mgs),jy,kgs(mgs),lz(il)) = z + ENDIF + ENDIF + ENDIF + + + ! set g1x to use as G factor later. If alpha is in the range ( rnumin < alpha < rnumax ), then + ! this will be the same as computing G from alpha. If alpha = rnumax, however, it probably means that + ! the moments are not matched correctly, so we compute G from the moments instead so that the dZ/dt rates + ! stay consistent with dN/dt and dq/dt. +! g1x(mgs,il) = zx(mgs,il)*chw*(pi*xdn(mgs,il))**2/(6.*qr*dn(igs(mgs),jy,kgs(mgs)))**2 +! g1x(mgs,il) = g1 ! zx(mgs,il)*cx(mgs,il)/(qr)**2 + IF ( alp >= alphamax - 0.5 ) THEN +! g1x(mgs,il) = 6**2*zx(mgs,il)/(cx(mgs,il)*(pi*xv(mgs,lr))**2) +! g1x(mgs,il) = (xdn(mgs,il))**2*zx(mgs,il)*cx(mgs,il)/((rho0(mgs)*qx(mgs,il))**2) + g1x(mgs,il) = (pi*xdn(mgs,il))**2*zx(mgs,il)*cx(mgs,il)/((6.*rho0(mgs)*qx(mgs,il))**2) + ELSE + g1x(mgs,il) = g1 + ENDIF + + ENDIF + +! IF ( ny .eq. 2 ) THEN +! IF ( qr .gt. 1.e-3 ) THEN +! write(0,*) 'alphah at nstep,i,k = ',dtp*(nstep-1),igs(mgs),kgs(mgs),alpha(mgs,il),qr*1000. +! ENDIF +! ENDIF + + + ENDIF ! .true. + + IF ( il == lr ) THEN + +! tmp = alpha(mgs,lr) + 4./3. +! i = Int(dgami*(tmp)) +! del = tmp - dgam*i +! x = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami +! +! tmp = alpha(mgs,lr) + 1. +! i = Int(dgami*(tmp)) +! del = tmp - dgam*i +! y = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami +! +!! ventrx(mgs) = Gamma_sp(alpha(mgs,lr) + 4./3.)/(alpha(mgs,lr) + 1.)**(1./3.)/Gamma_sp(alpha(mgs,lr) + 1.) +! ventrx(mgs) = x/(y*(alpha(mgs,lr) + 1.)**(1./3.)) + + + tmp = alpha(mgs,lr) + 1. + i = Int(dgami*(tmp)) + del = tmp - dgam*i + y = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami + + gf1palp(mgs) = y + + IF ( iferwisventr == 2 ) THEN + tmp = alpha(mgs,lr) + 2.5 + br/2. + i = Int(dgami*(tmp)) + del = tmp - dgam*i + x = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami + +! ventrx(mgs) = Gamma_sp(alpha(mgs,lr) + 1.5 + br/6.)/Gamma_sp(alpha(mgs,lr) + 1.) + + ventrxn(mgs) = x/y + + ENDIF + + ENDIF ! il==lr + + + ELSE ! below mass threshold +! g1 = (6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ +! & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))) +! z1 = g1*rho0(mgs)**2*(qr)*qr/chw +! z = 1.e18*z1*(6./(pi*1000.))**2 +! z = z1*(6./(pi*1000.))**2 +! zx(mgs,il) = z +! an(igs(mgs),jy,kgs(mgs),lz(il)) = z + ENDIF ! ( qx(mgs,il) .gt. qxmin(il) ) + + + +! ENDIF + ENDDO ! mgs + +! CALL cld_cpu('Z-DELABK') + +! IF ( il == lr ) THEN +! xnutmp = (alpha(mgs,il) - 2.)/3. +! da0lr(mgs) = delbk(bb(il), xnutmp, xmu(il), 0) +! ENDIF + + IF ( .not. ( il == lr .and. imurain == 3 ) ) THEN +! CALL cld_cpu('Z-DELABK') + DO mgs = 1,ngscnt + IF ( qx(mgs,il) > qxmin(il) ) THEN + xnutmp = (alpha(mgs,il) - 2.)/3. + +! IF ( .true. ) THEN + DO ic = lc,lh-1 ! lhab + IF ( il .ne. ic .and. qx(mgs,ic) .gt. qxmin(ic)) THEN + xnuc = xnu(ic) + IF ( ic == lc .and. idiagnosecnu > 0 ) xnuc = alpha(mgs,lc) ! alpha for droplets is actually nu + IF ( il /= lr .and. ic == lr .and. lzr > 1 ) THEN + IF ( imurain == 3 ) THEN + xnuc = alpha(mgs,lr) ! alpha is nu already + ELSE + xnuc = ( alpha(mgs,lr) - 2. )/3. ! convert alpha to nu + ENDIF + ENDIF + ! delabk(ba,bb,nua,nub,mua,mub,k), where a (il) is collector and b (ic) is collected + IF ( .false. ) THEN + dab0lh(mgs,ic,il) = delabk(bb(ic), bb(il), xnuc, xnutmp, xmu(ic), xmu(il), 0) !dab0(il,ic) + dab1lh(mgs,ic,il) = delabk(bb(ic), bb(il), xnuc, xnutmp, xmu(ic), xmu(il), 1) !dab1(il,ic) + dab0lh(mgs,il,ic) = delabk(bb(il), bb(ic), xnutmp, xnuc, xmu(il), xmu(ic), 0) !dab0(il,ic) + dab1lh(mgs,il,ic) = delabk(bb(il), bb(ic), xnutmp, xnuc, xmu(il), xmu(ic), 1) !dab1(il,ic) + ELSE ! use lookup table -- not interpolating yet because table resolution of 0.05 is good enough + i = Nint( alpha(mgs,il)*dqiacralphainv ) + IF ( ic == lc .or. ic == li .or. ic == ls .or. (ic == lr .and. imurain == 3) ) THEN + alp = (3.*alpha(mgs,ic) + 2.) + j = Nint( (3.*alpha(mgs,ic) + 2.)*dqiacralphainv ) + ELSE ! IF ( ic == lr .and. imurain == 1 ) ! rain + alp = alpha(mgs,ic) + j = Nint( alpha(mgs,ic)*dqiacralphainv ) + ENDIF + + dab0lh(mgs,ic,il) = dab0lu(j,i,ic,il) + dab1lh(mgs,ic,il) = dab1lu(j,i,ic,il) + dab0lh(mgs,il,ic) = dab0lu(i,j,il,ic) + dab1lh(mgs,il,ic) = dab1lu(i,j,il,ic) + +! tmp1 = dab0lu(j,i,ic,il) +! tmp2 = dab1lu(j,i,ic,il) +! tmp3 = dab0lu(i,j,il,ic) +! tmp4 = dab1lu(i,j,il,ic) +! tmp5 = delabk(bb(il), bb(ic), xnutmp, xnuc, xmu(ic), xmu(il), 0) !dab0(il,ic) +! tmp6 = delabk(bb(il), bb(ic), xnutmp, xnuc, xmu(ic), xmu(il), 1) !dab1(il,ic) +! tmp5 = delabk(bb(il), bb(ic), xnutmp, xnuc, xmu(il), xmu(ic), 0) !dab0(il,ic) +! tmp6 = delabk(bb(il), bb(ic), xnutmp, xnuc, xmu(il), xmu(ic), 1) !dab1(il,ic) + + IF ( .false. .and. ny <= 2 ) THEN + write(0,*) + write(0,*) 'bb: ', bb(il), bb(ic), xnutmp, xnuc, xmu(il), xmu(ic) + write(0,*) 'il,ic = ',il,ic,alpha(mgs,il),i,xnuc,alp,j + write(0,*) 'dab0lh,tmp1 = ',dab0lh(mgs,ic,il),tmp1 + write(0,*) 'dab1lh,tmp2 = ',dab1lh(mgs,ic,il),tmp2 + write(0,*) 'dab0lh,tmp3 = ',dab0lh(mgs,il,ic),tmp3,tmp5 + write(0,*) 'dab1lh,tmp4 = ',dab1lh(mgs,il,ic),tmp4,tmp6 + + ENDIF + + ENDIF + + ENDIF + ENDDO + +! ENDIF + + da0lx(mgs,il) = delbk(bb(il), xnutmp, xmu(il), 0) + IF ( il .eq. lh ) THEN + da0lh(mgs) = delbk(bb(il), xnutmp, xmu(il), 0) + IF ( lzr > 1 ) THEN + rzxh(mgs) = 1. + ELSE + rzxh(mgs) = ((4. + alpha(mgs,il))*(5. + alpha(mgs,il))*(6. + alpha(mgs,il))*(1. + xnu(lr)))/ & + & ((1. + alpha(mgs,il))*(2. + alpha(mgs,il))*(3. + alpha(mgs,il))*(2. + xnu(lr))) + ENDIF + + IF ( lzhl < 1 ) THEN + rzxhlh(mgs) = rzxhl(mgs)/(((4. + alpha(mgs,il))*(5. + alpha(mgs,il))*(6. + alpha(mgs,il))*(1. + xnu(lr)))/ & + & ((1. + alpha(mgs,il))*(2. + alpha(mgs,il))*(3. + alpha(mgs,il))*(2. + xnu(lr)))) + ENDIF + ELSEIF ( il .eq. lhl ) THEN + da0lhl(mgs) = delbk(bb(il), xnutmp, xmu(il), 0) + IF ( lzr > 1 ) THEN + rzxhl(mgs) = 1. + ELSE + rzxhl(mgs) = ((4.0 + alpha(mgs,il))*(5. + alpha(mgs,il))*(6. + alpha(mgs,il))*(1. + xnu(lr)))/ & + & ((1. + alpha(mgs,il))*(2. + alpha(mgs,il))*(3. + alpha(mgs,il))*(2. + xnu(lr))) + ENDIF + ELSEIF ( il == lr ) THEN + xnutmp = (alpha(mgs,il) - 2.)/3. + da0lr(mgs) = delbk(bb(il), xnutmp, xmu(il), 0) + da1lr(mgs) = delbk(bb(il), xnutmp, xmu(il), 1) + ENDIF + + ENDIF ! ( qx(mgs,il) > qxmin(il) ) + ENDDO ! mgs +! CALL cld_cpu('Z-DELABK') + ENDIF ! il /= lr + +! CALL cld_cpu('Z-DELABK') + + ENDIF ! lz(il) .gt. 1 + + ENDDO ! il + + ENDIF ! ipconc .ge. 6 + +! CALL cld_cpu('Z-MOMENT-1') ! ! set some values for ice nucleation @@ -12044,7 +15123,7 @@ subroutine nssl_2mom_gs & ! & itype1a,itype2a,temcg,infdo,alpha) - infdo = 0 + infdo = 1 IF ( rimdenvwgt > 0 ) infdo = 1 call setvtz(ngscnt,qx,qxmin,qxw,cx,rho0,rhovt,xdia,cno,cnostmp, & @@ -12058,9 +15137,9 @@ subroutine nssl_2mom_gs & IF ( lwsm6 .and. ipconc == 0 ) THEN tmp = Max(qxmin(lh), qxmin(ls)) DO mgs = 1,ngscnt - sum = qx(mgs,lh) + qx(mgs,ls) - IF ( sum > tmp ) THEN - vt2ave(mgs) = (qx(mgs,lh)*vtxbar(mgs,lh,1) + qx(mgs,ls)*vtxbar(mgs,ls,1))/sum + total = qx(mgs,lh) + qx(mgs,ls) + IF ( total > tmp ) THEN + vt2ave(mgs) = (qx(mgs,lh)*vtxbar(mgs,lh,1) + qx(mgs,ls)*vtxbar(mgs,ls,1))/total ELSE vt2ave(mgs) = 0.0 ENDIF @@ -12206,6 +15285,17 @@ subroutine nssl_2mom_gs & + IF ( ipconc >= 6 ) THEN + frac = 0.4d0 + zxmxd(:,:) = 0.0 + DO il = lr,lhab + IF ( lz(il) > 0 .or. ( il == lr ) ) THEN + DO mgs = 1,ngscnt + zxmxd(mgs,il) = frac*zx(mgs,il)*dtpinv + ENDDO + ENDIF + ENDDO + ENDIF @@ -12243,10 +15333,10 @@ subroutine nssl_2mom_gs & vshdgs(mgs,il) = vshd ! base value - IF ( qx(mgs,il) > qxmin(il) ) THEN + IF ( qx(mgs,il) > qxmin(il) .and. ivshdgs > 0 ) THEN ! tmpdiam is weighted diameter of d^(shedalp-1), so for shedalp=3, this is the area-weighted diameter or maximum mass diameter. - tmpdiam = (shedalp+alpha(mgs,il))*xdia(mgs,il,1)*( xdn(mgs,il)/917. )**(1./3.) ! erm added density factor for equiv. solid ice sphere 10.12.2015 + tmpdiam = (shedalp+alpha(mgs,il))*xdia(mgs,il,1) ! *( xdn(mgs,il)/917. )**(1./3.) ! erm added density factor for equiv. solid ice sphere 10.12.2015 IF ( tmpdiam > sheddiam0 ) THEN vshdgs(mgs,il) = 0.523599*(1.5e-3)**3/massfacshr ! 1.5mm drops from very large ice @@ -12303,13 +15393,13 @@ subroutine nssl_2mom_gs & ers(mgs) = 0.0 ess(mgs) = 0.0 ehs(mgs) = 0.0 ! used as sticking efficiency, so collection efficiency is ehs*ehsclsn + ehsfac(mgs) = 1.0 ! factor based on ice saturation ehls(mgs) = 0.0 ! used as sticking efficiency, so collection efficiency is ehls*ehlsclsn ehscnv(mgs) = 0.0 ! ehxs(mgs) = 0.0 ! eiw(mgs) = 0.0 eii(mgs) = 0.0 - ehsclsn(mgs) = 0.0 ehiclsn(mgs) = 0.0 ehlsclsn(mgs) = 0.0 @@ -12404,7 +15494,7 @@ subroutine nssl_2mom_gs & if ( qx(mgs,li).gt.qxmin(li) .and. qx(mgs,lc).gt.qxmin(lc) ) then - if (xdia(mgs,lc,1).gt.15.0e-06 .and. xdia(mgs,li,1).gt.30.0e-06) then + if (xdia(mgs,lc,1).gt.ewi_dcmin .and. xdia(mgs,li,1).gt.ewi_dimin) then ! erm 5/10/2007 test following change: ! if (xdia(mgs,lc,1).gt.12.0e-06 .and. xdia(mgs,li,1).gt.50.0e-06) then eiw(mgs) = 0.5 @@ -12528,7 +15618,7 @@ subroutine nssl_2mom_gs & ELSE fac = Abs(ess0) - IF ( .true. .and. ess0 < 0.0 ) THEN + IF ( iessopt == 2 ) THEN ! experimental code ! IF ( wvel(mgs) > 2.0 .or. wvel(mgs) < -0.5 .or. ssi(mgs) < 1.0 ) THEN IF ( wvel(mgs) > 2.0 ) THEN ! assume convective cell or downdraft @@ -12536,9 +15626,25 @@ subroutine nssl_2mom_gs & ELSEIF ( wvel(mgs) > 1.0 ) THEN ! transition to stratiform range of values fac = Max(0.0, 2.0 - wvel(mgs))*fac ENDIF + ELSEIF ( iessopt == 3 ) THEN ! factor based on ice supersat + IF ( ssi(mgs) <= 1.0 ) THEN + fac = 0.0 + ehsfac(mgs) = 0.0 + ELSEIF ( ssi(mgs) <= 1.02 ) THEN + fac = fac*(ssi(mgs) - 1.0)/0.02 + ehsfac(mgs) = (ssi(mgs) - 1.0)/0.02 + ENDIF + ELSEIF ( iessopt == 4 ) THEN ! factor based on ice supersat; very roughly based on Hosler et al. 1957 (J. Met.) + IF ( ssi(mgs) <= 1.0 ) THEN + fac = 0.1 + ehsfac(mgs) = 0.1 + ELSEIF ( ssi(mgs) <= 1.005 ) THEN + fac = Max(0.1, fac*(ssi(mgs) - 1.0)/0.005) + ehsfac(mgs) = Max(0.1, (ssi(mgs) - 1.0)/0.005) + ENDIF ENDIF - IF ( temcg(mgs) > esstem1 .and. temcg(mgs) < esstem2 ) THEN ! only nonzero for T > -25 + IF ( temcg(mgs) > esstem1 .and. temcg(mgs) < esstem2 ) THEN ! only nonzero for T > esstem1 ess(mgs) = fac*Exp(ess1*(esstem2) )*(temcg(mgs) - esstem1)/(esstem2 - esstem1) ! linear ramp up from zero at esstem1 to value at esstem2 ELSEIF ( temcg(mgs) >= esstem2 ) THEN ess(mgs) = fac*Exp(ess1*Min( temcg(mgs), 0.0 ) ) @@ -12649,7 +15755,11 @@ subroutine nssl_2mom_gs & ELSE ehscnv(mgs) = exp(0.09*min(temcg(mgs),0.0)) ENDIF - if ( qx(mgs,lh).gt.qxmin(lh) .and. qx(mgs,lc) > qxmin(lc) ) then + + IF ( qx(mgs,lh).gt.qxmin(lh) .and. qx(mgs,lc) >= qxmin(lc) ) THEN +! ehsclsn(mgs) = ehs_collsn +! ehs(mgs) = ehscnv(mgs)*ehsfac(mgs)*Min(1.0, Max(0.0,xdn(mgs,lh) - 300.)/300. ) +! ELSEIF ( qx(mgs,lh).gt.qxmin(lh) .and. qx(mgs,lc) >= qxmin(lc) ) then ehsclsn(mgs) = ehs_collsn IF ( xdia(mgs,ls,3) < 40.e-6 ) THEN ehsclsn(mgs) = 0.0 @@ -12659,9 +15769,9 @@ subroutine nssl_2mom_gs & ehsclsn(mgs) = ehs_collsn ENDIF ! ehs(mgs) = ehscnv(mgs)*Min(1.0, Max(0., xdn(mgs,lh) - xdnmn(lh)*1.2)/xdnmn(lh) ) ! shut off qhacs as graupel goes to lowest density - ehs(mgs) = ehscnv(mgs)*Min(1.0, Max(0.0,xdn(mgs,lh) - 300.)/300. ) ! shut off qhacs as graupel goes to low density + ehs(mgs) = ehscnv(mgs)*Min(1.0, Max(0.0,xdn(mgs,lh) - 300.)/300. ) ! shut off qhacs as graupel goes to low density; limits scavenging of snow in bright band +! ehs(mgs) = ehscnv(mgs) ! *Min(1.0, Max(0.0,xdn(mgs,lh) - 300.)/300. ) ! shut off qhacs as graupel goes to low density ehs(mgs) = Min(ehs(mgs),ehsmax) - IF ( qx(mgs,lc) < qxmin(lc) ) ehs(mgs) = 0.0 end if ENDIF ! @@ -12669,7 +15779,7 @@ subroutine nssl_2mom_gs & ehiclsn(mgs) = ehi_collsn ehi(mgs)=eii0*exp(eii1*min(temcg(mgs),0.0)) ehi(mgs) = Min( ehimax, Max( ehi(mgs), ehimin ) ) - if ( temg(mgs) .gt. 273.15 .or. ( qx(mgs,lc) < qxmin(lc)) ) ehi(mgs) = 0.0 +! if ( temg(mgs) .gt. 273.15 .or. ( qx(mgs,lc) < qxmin(lc)) ) ehi(mgs) = 0.0 end if IF ( lis > 1 ) THEN @@ -12677,7 +15787,7 @@ subroutine nssl_2mom_gs & ehisclsn(mgs) = ehi_collsn ehis(mgs)=eii0*exp(eii1*min(temcg(mgs),0.0)) ehis(mgs) = Min( ehimax, Max( ehis(mgs), ehimin ) ) - if ( temg(mgs) .gt. 273.15 .or. ( qx(mgs,lc) < qxmin(lc)) ) ehis(mgs) = 0.0 +! if ( temg(mgs) .gt. 273.15 .or. ( qx(mgs,lc) < qxmin(lc)) ) ehis(mgs) = 0.0 end if ENDIF @@ -12814,6 +15924,7 @@ subroutine nssl_2mom_gs & end do + ! ! ! @@ -12887,6 +15998,7 @@ subroutine nssl_2mom_gs & do mgs = 1,ngscnt qraci(mgs) = 0.0 craci(mgs) = 0.0 + qracs(mgs) = 0.0 IF ( eri(mgs) .gt. 0.0 .and. iacr .ge. 1 .and. xdia(mgs,lr,3) .gt. 2.*rwradmn ) THEN IF ( ipconc .ge. 3 ) THEN @@ -12932,8 +16044,9 @@ subroutine nssl_2mom_gs & ENDIF end do ! + IF ( ipconc < 3 ) THEN do mgs = 1,ngscnt - qracs(mgs) = 0.0 + qracs(mgs) = 0.0 IF ( ers(mgs) .gt. 0.0 .and. ipconc < 3 ) THEN IF ( lwsm6 .and. ipconc == 0 ) THEN vt = vt2ave(mgs) @@ -12950,6 +16063,7 @@ subroutine nssl_2mom_gs & & , qsmxd(mgs)) ENDIF end do + ENDIF ! ! @@ -13096,6 +16210,7 @@ subroutine nssl_2mom_gs & ! do mgs = 1,ngscnt qhacw(mgs) = 0.0 + qhacwmlr(mgs) = 0.0 rarx(mgs,lh) = 0.0 vhacw(mgs) = 0.0 vhsoak(mgs) = 0.0 @@ -13162,6 +16277,11 @@ subroutine nssl_2mom_gs & ENDIF + qhacwmlr(mgs) = qhacw(mgs) + IF ( temg(mgs) > tfr .and. iqhacwshr == 0 ) THEN + qhacw(mgs) = 0.0 + ENDIF + IF ( lvol(lh) .gt. 1 .or. lhl .gt. 1 ) THEN ! calculate rime density for graupel volume and/or for graupel conversion to hail IF ( temg(mgs) .lt. 273.15) THEN @@ -13191,14 +16311,18 @@ subroutine nssl_2mom_gs & rimdn(mgs,lh) = 1000.*(0.051 + 0.114*tmp - 0.0055*tmp**2) - ELSEIF ( irimdenopt == 3 ) THEN ! Macklin + ELSEIF ( irimdenopt == 3 .or. irimdenopt == 4) THEN ! Macklin (3) or Saunders and Hosseini 2001 tmp = (-((0.5)*(1.e+06)*xdia(mgs,lc,1)) & & *( (1.0-rimdenvwgt)*vtxbar(mgs,lh,1) + rimdenvwgt*vtxbar(mgs,lh,2) ) & & /(temg(mgs)-273.15)) ! tmp = Min( 5.5/0.6, Max( 0.3/0.6, tmp ) ) - rimdn(mgs,lh) = Min(900., Max( 170., 110.*tmp**0.76 ) ) + IF ( irimdenopt == 3 ) THEN + rimdn(mgs,lh) = Min(900., Max( 170., 110.*tmp**0.76 ) ) + ELSEIF ( irimdenopt == 4 ) THEN ! Saunders and Hosseini + rimdn(mgs,lh) = Min(917., Max( 10., 900.0*(1.0 - 0.905**tmp ) ) ) + ENDIF ENDIF ELSE @@ -13412,6 +16536,7 @@ subroutine nssl_2mom_gs & do mgs = 1,ngscnt qhlacw(mgs) = 0.0 + qhlacwmlr(mgs) = 0.0 vhlacw(mgs) = 0.0 vhlsoak(mgs) = 0.0 IF ( lhl > 1 .and. .true.) THEN @@ -13440,10 +16565,15 @@ subroutine nssl_2mom_gs & qhlacw(mgs) = Min( qhlacw(mgs), 0.5*qx(mgs,lc)*dtpinv ) + qhlacwmlr(mgs) = qhlacw(mgs) + IF ( temg(mgs) > tfr .and. iqhlacwshr == 0 ) THEN + qhlacw(mgs) = 0.0 + ENDIF + IF ( lvol(lhl) .gt. 1 ) THEN IF ( temg(mgs) .lt. 273.15) THEN - IF ( irimdenopt == 1 ) THEN ! Rasmussen and Heymsfeld (1985) + IF ( irimdenopt == 1 ) THEN ! Heymsfeld and Pflaum (1985) rimdn(mgs,lhl) = rimc1*(-((0.5)*(1.e+06)*xdia(mgs,lc,1)) & & *((0.60)*( (1.0-rimdenvwgt)*vtxbar(mgs,lhl,1) + rimdenvwgt*vtxbar(mgs,lhl,2) )) & & /(temg(mgs)-273.15))**(rimc2) @@ -13457,13 +16587,17 @@ subroutine nssl_2mom_gs & rimdn(mgs,lhl) = 1000.*(0.051 + 0.114*tmp - 0.005*tmp**2) - ELSEIF ( irimdenopt == 3 ) THEN ! Macklin + ELSEIF ( irimdenopt == 3 .or. irimdenopt == 4) THEN ! Macklin (3) or Saunders and Hosseini 2001 tmp = -0.5*(1.e+06)*xdia(mgs,lc,1) & & *( (1.0-rimdenvwgt)*vtxbar(mgs,lhl,1) + rimdenvwgt*vtxbar(mgs,lhl,2) ) & & /(temg(mgs)-273.15) ! tmp = Min( 5.5/0.6, Max( 0.3/0.6, tmp ) ) - rimdn(mgs,lhl) = Min(900., Max( 170., 110.*tmp**0.76 ) ) + IF ( irimdenopt == 3 ) THEN + rimdn(mgs,lhl) = Min(900., Max( 170., 110.*tmp**0.76 ) ) + ELSEIF ( irimdenopt == 4 ) THEN ! Saunders and Hosseini + rimdn(mgs,lhl) = Min(917., Max( 10., 900.0*(1.0 - 0.905**tmp ) ) ) + ENDIF ENDIF ELSE @@ -13778,7 +16912,7 @@ subroutine nssl_2mom_gs & frach = 0.5 *(1. + Tanh(0.2e12 *( xvfrz - 1.15*xvbiggsnow))) qiacrs(mgs) = (1.-frach)*qiacr(mgs) - ciacrs(mgs) = (1.-frach)*ciacr(mgs) ! *rzxh(mgs) + ciacrs(mgs) = (1.-frach)*ciacrf(mgs) ! *rzxh(mgs) ENDIF ENDIF @@ -13808,7 +16942,7 @@ subroutine nssl_2mom_gs & tmp = xv(mgs,ls)/(xvmx(ls)*Max(1.,100./Min(100.,xdn(mgs,ls)))) ! fraction of max snow mass IF ( tmp .lt. essfrac1 ) THEN ec0(mgs) = 1.0 - ELSEIF ( tmp .gt. essfrac2 ) THEN + ELSEIF ( tmp .ge. essfrac2 ) THEN ec0(mgs) = 0.0 ELSE ec0(mgs) = (essfrac2 - tmp)/(essfrac2 - essfrac1) @@ -13885,7 +17019,21 @@ subroutine nssl_2mom_gs & ec0(mgs) = 2.e9 IF ( qx(mgs,lr) .gt. qxmin(lr) ) THEN rwrad = 0.5*xdia(mgs,lr,3) - IF ( xdia(mgs,lr,3) .gt. 2.0e-3 .or. icracr <= 0 ) THEN + + + ! check median volume diameter + IF ( icracrthresh > 1 ) THEN + IF ( imurain == 1 ) THEN + tmp = (3.67+alpha(mgs,lr))*xdia(mgs,lr,1) ! median volume diameter; units of mm (Ulbrich 1983, JCAM) + ELSE ! imurain == 3, + tmp = (1.678+alpha(mgs,lr))**(1./3.)*xdia(mgs,lr,1) ! units of mm (using method of Ulbrich 1983. See ventillation_stuff.nb) + ENDIF + ELSE + tmp = xdia(mgs,lr,3) - 0.1e-3 + ENDIF + +! IF ( xdia(mgs,lr,3) .gt. 2.0e-3 .or. icracr <= 0 ) THEN + IF ( tmp .gt. 1.9e-3 .or. icracr <= 0 ) THEN ec0(mgs) = 0.0 cracr(mgs) = 0.0 ELSE @@ -13967,6 +17115,7 @@ subroutine nssl_2mom_gs & ! if (ndebug .gt. 0 ) write(0,*) 'ICEZVD_GS: conc 22kk' chaci(:) = 0.0 + chaci0(:) = 0.0 if ( ipconc .ge. 1 .or. ipelec .ge. 1 ) then do mgs = 1,ngscnt IF ( ehi(mgs) .gt. 0.0 .or. ( ehiclsn(mgs) > 0.0 .and. ipelec > 0 )) THEN @@ -14017,6 +17166,7 @@ subroutine nssl_2mom_gs & ! if (ndebug .gt. 0 ) write(0,*) 'ICEZVD_GS: conc 22nn' chacs(:) = 0.0 + chacs0(:) = 0.0 if ( ipconc .ge. 1 .or. ipelec .ge. 1 ) then do mgs = 1,ngscnt IF ( ehs(mgs) .gt. 0 ) THEN @@ -14176,7 +17326,7 @@ subroutine nssl_2mom_gs & ! Ziegler (1985) autoconversion ! ! - IF ( ipconc .ge. 2 .and. ircnw /= -1) THEN ! DTD: added flag for autoconversion. If -1, turns off autoconversion + IF ( ipconc .ge. 2 ) THEN if (ndebug .gt. 0 ) write(0,*) 'conc 26a' DO mgs = 1,ngscnt @@ -14196,7 +17346,7 @@ subroutine nssl_2mom_gs & cautn(mgs) = Min(ccmxd(mgs), & & ((alpha(mgs,lc)+2.)/(alpha(mgs,lc)+1.))*aa1*cx(mgs,lc)**2*xv(mgs,lc)**2) cautn(mgs) = Max( 0.0d0, cautn(mgs) ) - IF ( rb(mgs) .le. 7.51d-6 ) THEN + IF ( rb(mgs) .le. 7.51d-6 .or. dmrauto == -1) THEN t2s = 1.d30 ! cautn(mgs) = 0.0 ELSE @@ -14259,6 +17409,47 @@ subroutine nssl_2mom_gs & IF ( crcnw(mgs) < 1.e-30 ) qrcnw(mgs) = 0.0 + IF ( ipconc >= 6 ) THEN + IF ( lzr > 1 .and. qrcnw(mgs) > 0.0 ) THEN +! vr = rho0(mgs)*qrcnw(mgs)/(1000.*crcnw(mgs)) +! zrcnw(mgs) = 36.*(xnu(lr)+2.0)*crcnw(mgs)*vr**2/((xnu(lr)+1.0)*pi**2) + ! DTD: If rain exists at a grid point already either use the alpha-preserving Z-rate eqn. (dmrauto == 1) + ! or a mass-weighted average of the alpha-preserving Z-rate eqn. and the init. rate eqn. (dmrauto == 2) + ! or the original initiation rate equation (dmrauto == 0). Not sure if this is the correct way to go but seems to work ok. + IF (qx(mgs,lr) .gt. qxmin(lr) .and. ( dmrauto == 1 .or. dmrauto ==2 ) ) THEN + tmp3 = qx(mgs,lr)/cx(mgs,lr) + tmp4 = g1x(mgs,lr)*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2* & + & ( 2.*tmp3 * qrcnw(mgs) - tmp3**2 * crcnw(mgs) ) + if (imurain == 3) then + vr = rho0(mgs)*qrcnw(mgs)/(1000.) + tmp3 = 36.*(xnu(lc)+2.0)*vr**2/(crcnw(mgs)*(xnu(lc)+1.0)*pi**2) + else + tmp3 = galpharaut*(6.*rho0(mgs)*qrcnw(mgs)/(pi*xdn0(lr)))**2/crcnw(mgs) + endif + IF ( dmrauto == 1 ) THEN ! Preserve alpha + zrcnw(mgs) = tmp4 + ELSEIF ( dmrauto == 2 ) THEN ! Mass-weighted average + zrcnw(mgs) = (tmp3*qrcnw(mgs)+tmp4*qx(mgs,lr))/(qrcnw(mgs)+qx(mgs,lr)) + ENDIF + else ! original formulation + IF ( imurain == 3 ) THEN + vr = rho0(mgs)*qrcnw(mgs)/(1000.) ! crcnw(mgs) not divided here but is in next line, cancels one factor in the numerator + zrcnw(mgs) = 36.*(xnu(lc)+2.0)*vr**2/(crcnw(mgs)*(xnu(lc)+1.0)*pi**2) + ELSE ! rain in gamma of diameter + IF ( dmropt <= 1 .or. dmropt >= 4 .or. ( qx(mgs,lr) < qxmin(lr) .and. cx(mgs,lr) < cxmin ) ) THEN + zrcnw(mgs) = galpharaut*(6.*rho0(mgs)*qrcnw(mgs)/(pi*xdn0(lr)))**2/crcnw(mgs) + ELSE + tmp3 = qx(mgs,lr)/cx(mgs,lr) + zrcnw(mgs) = g1x(mgs,lr)*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2* & + & ( 2.*tmp3 * qrcnw(mgs) - tmp3**2 * crcnw(mgs) ) + ENDIF +! vr = rho0(mgs)*qrcnw(mgs)/(1000.) ! crcnw(mgs) not divided here but is in next line, cancels one factor in the numerator +! zrcnw(mgs) = 36.*(xnu(lc)+2.0)*vr**2/(crcnw(mgs)*(xnu(lc)+1.0)*pi**2) + ENDIF + endif +! z = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/((alpha(mgs,lr)+1.0)*pi**2) + ENDIF + ENDIF ! ipconc >= 6 ! IF ( crcnw(mgs) .gt. cautn(mgs) .and. crcnw(mgs) .gt. 1.0 ) ! : THEN ! write(0,*) 'crcnw,cautn ',crcnw(mgs)/cautn(mgs), @@ -14469,6 +17660,15 @@ subroutine nssl_2mom_gs & ELSE !{ + IF ( ipconc >= 6 .and. lzr > 1 ) THEN + ! interpolate along x, i.e., ratio; + tmp1 = ziacrratio(i,j) + delx*dqiacrratioinv*(ziacrratio(ip1,j) - ziacrratio(i,j)) + tmp2 = ziacrratio(i,jp1) + delx*dqiacrratioinv*(ziacrratio(ip1,jp1) - ziacrratio(i,jp1)) + + ! interpolate along alpha; + + zrfrz(mgs) = (tmp1 + dely*dqiacralphainv*(tmp2 - tmp1))*zx(mgs,lr)*dtpinv + ENDIF IF ( ibiggsmallrain > 0 .and. xv(mgs,lr) < 2.*xvmn(lr) .and. ( ibiggsnow == 1 .or. ibiggsnow == 3 ) ) THEN ! IF ( ibiggsmallrain > 0 .and. xv(mgs,lr) < xvbiggsnow .and. ( ibiggsnow == 1 .or. ibiggsnow == 3 ) ) THEN @@ -14478,6 +17678,10 @@ subroutine nssl_2mom_gs & crfrzs(mgs) = crfrz(mgs) qrfrzs(mgs) = qrfrz(mgs) + IF ( ipconc >= 6 .and. lzr > 1 ) THEN + zrfrzs(mgs) = zrfrz(mgs) + zrfrzf(mgs) = 0. + ENDIF ELSEIF ( dbigg < Max( biggsnowdiam, Max(dfrz,dhmn)) .and. ( ibiggsnow == 1 .or. ibiggsnow == 3 ) ) THEN ! { convert some to snow or ice crystals ! temporarily store qrfrz and crfrz in snow terms and caclulate new crfrzf, qrfrzf, and zrfrzf. Leave crfrz etc. alone! @@ -14489,6 +17693,10 @@ subroutine nssl_2mom_gs & crfrzf(mgs) = 0.0 qrfrzf(mgs) = 0.0 + IF (ipconc >= 6 .and. lzr > 1 ) THEN + zrfrzs(mgs) = zrfrz(mgs) + zrfrzf(mgs) = 0. + ENDIF ELSE !{ ! recalculate using dhmn for ratio @@ -14528,10 +17736,23 @@ subroutine nssl_2mom_gs & crfrzs(mgs) = crfrzs(mgs) - crfrzf(mgs) qrfrzs(mgs) = qrfrzs(mgs) - qrfrzf(mgs) + IF ( ipconc >= 6 .and. lzr > 1 ) THEN + zrfrzs(mgs) = zrfrz(mgs) + ! interpolate along x, i.e., ratio; + tmp1 = ziacrratio(i,j) + delx*dqiacrratioinv*(ziacrratio(ip1,j) - ziacrratio(i,j)) + tmp2 = ziacrratio(i,jp1) + delx*dqiacrratioinv*(ziacrratio(ip1,jp1) - ziacrratio(i,jp1)) + + ! interpolate along alpha; + + zrfrzf(mgs) = (tmp1 + dely*dqiacralphainv*(tmp2 - tmp1))*zx(mgs,lr)*dtpinv + zrfrzs(mgs) = zrfrzs(mgs) - zrfrzf(mgs) + zrfrzf(mgs) = (1000./900.)**2*zrfrzf(mgs) + ENDIF ENDIF ! } ELSE crfrzs(mgs) = 0.0 qrfrzs(mgs) = 0.0 + zrfrzs(mgs) = 0.0 ENDIF ! } ENDIF !} @@ -14544,6 +17765,10 @@ subroutine nssl_2mom_gs & crfrz(mgs) = fac*crfrz(mgs) crfrzs(mgs) = fac*crfrzs(mgs) crfrzf(mgs) = fac*crfrzf(mgs) + IF ( ipconc >= 6 .and. lzr > 1 ) THEN + zrfrz(mgs) = fac*zrfrz(mgs) + zrfrzf(mgs) = fac*zrfrzf(mgs) + ENDIF ENDIF ENDIF !} @@ -15088,8 +18313,16 @@ subroutine nssl_2mom_gs & x = 1. + alpha(mgs,lr) - IF ( lzr > 1 ) THEN ! 3 moment -! + IF ( ipconc >= 6 .and. lzr > 1 ) THEN ! 3 moment + tmp = 1. + alpr ! alpha(mgs,lr) + i = Int(dgami*(tmp)) + del = tmp - dgam*i + g1palp = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami + + tmp = 2.5 + alpha(mgs,lr) + 0.5*bx(lr) + i = Int(dgami*(tmp)) + del = tmp - dgam*i + y = (gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami)/g1palp ! ratio of gamma functions ELSE y = ventrxn(mgs) ENDIF @@ -15105,6 +18338,13 @@ subroutine nssl_2mom_gs & & 0.308*fvent(mgs)*y* & & Sqrt(ax(lr)*rhovt(mgs))*(vent1/vent2) + rwventz(mgs) = 0.0 + +! rwventz(mgs) = & +! & 0.78*x + & +! & 0.308*fvent(mgs)*y* & +! & Sqrt(ax(lr)*rhovt(mgs))*(vent1/vent2) + ELSEIF ( iferwisventr == 2 ) THEN @@ -15117,6 +18357,23 @@ subroutine nssl_2mom_gs & & *(xdia(mgs,lr,1)**((1.0+br)/2.0)) ) + IF ( ipconc >= 7 ) THEN + alpr = Min(alpharmax,alpha(mgs,lr) ) + + tmp = alpr + 5.5 + br/2. + i = Int(dgami*(tmp)) + del = tmp - dgam*i + y = gmoi(i) + (gmoi(i+1) - gmoi(i))*del*dgami + +! rwventz(mgs) = & +! & 0.78*(4. + alpha(mgs,lr))*(3. + alpha(mgs,lr))*(2. + alpha(mgs,lr))*(1. + alpha(mgs,lr)) + & + rwventz(mgs) = & + & 0.78*(4. + alpr)*(3. + alpr)*(2. + alpr)*(1. + alpr) + & + & 0.308*fvent(mgs)* & + & Sqrt(ax(lr)*rhovt(mgs))*(y/gf1palp(mgs))*(xdia(mgs,lr,1)**((1.0+br)/2.0)) + + ENDIF + ENDIF ! iferwisventr @@ -15159,6 +18416,9 @@ subroutine nssl_2mom_gs & hwventa = (0.78)*gmoi(igmhwa) hwventb = (0.308)*gmoi(igmhwb) ! hwventc = (4.0*gr/(3.0*cdx(lh)))**(0.25) + hwvent(:) = 0.0 + hwventy(:) = 0.0 + do mgs = 1,ngscnt IF ( qx(mgs,lh) .gt. qxmin(lh) ) THEN hwventc = (4.0*gr/(3.0*cdxgs(mgs,lh)))**(0.25) @@ -15279,6 +18539,8 @@ subroutine nssl_2mom_gs & & -ftka(mgs)*temcg(mgs)/rho0(mgs) ) & & / (felf(mgs)) fmlt2(mgs) = -fcw(mgs)*temcg(mgs)/felf(mgs) + fmlt1e(mgs) = (2.0*pi)* & + & ( felv(mgs)*fwvdf(mgs)*(qss0(mgs)-qx(mgs,lv)) ) / (felf(mgs)) end do ! ! Vapor Deposition constants @@ -15306,6 +18568,7 @@ subroutine nssl_2mom_gs & qhlmlrlg(:) = 0.0 ENDIF qhfzh(:) = 0.0 + qffzf(:) = 0.0 qhlfzhl(:) = 0.0 qhfzhlg(:) = 0.0 qhlfzhllg(:) = 0.0 @@ -15313,9 +18576,10 @@ subroutine nssl_2mom_gs & vffzf(:) = 0.0 vhlfzhl(:) = 0.0 qsfzs(:) = 0.0 - zsmlr(:) = 0.0 +! zsmlr(:) = 0.0 zhmlr(:) = 0.0 zhmlrr(:) = 0.0 + zsmlrr(:) = 0.0 zhshr(:) = 0.0 zhlmlr(:) = 0.0 zhlshr(:) = 0.0 @@ -15329,6 +18593,7 @@ subroutine nssl_2mom_gs & chmlr(:) = 0.0 chmlrr(:) = 0.0 chlmlr(:) = 0.0 + chlfmlr(:) = 0.0 ! chlmlrsave(:) = 0.0 ! qhlmlrsave(:) = 0.0 ! chlsave(:) = 0.0 @@ -15366,7 +18631,7 @@ subroutine nssl_2mom_gs & qhmlr(mgs) = & & meltfac*min( & & fmlt1(mgs)*cx(mgs,lh)*hwvent(mgs)*xdia(mgs,lh,1) & - & + fmlt2(mgs)*(qhacrmlr(mgs)+qhacw(mgs)) & + & + fmlt2(mgs)*(qhacrmlr(mgs)+qhacwmlr(mgs)) & & , 0.0 ) ELSEIF ( ibinhmlr == 1 ) THEN ! use incomplete gamma functions to approximate the bin results @@ -15397,13 +18662,13 @@ subroutine nssl_2mom_gs & qhlmlr(mgs) = & & meltfac*min( & & fmlt1(mgs)*cx(mgs,lhl)*hlvent(mgs)*xdia(mgs,lhl,1) & - & + fmlt2(mgs)*(qhlacrmlr(mgs)+qhlacw(mgs)) & + & + fmlt2(mgs)*(qhlacrmlr(mgs)+qhlacwmlr(mgs)) & & , 0.0 ) ELSEIF ( ibinhlmlr == 1 ) THEN ! use incomplete gamma functions to approximate the bin results -! #ifdef Z3MOM -! #if (defined Z3MOM) && defined( COMMAS ) || defined( COMMASTMP ) +! #ifdef 1 +! #if (defined 1) && defined( COMMAS ) || defined( COMMASTMP ) ELSEIF ( ibinhlmlr == -1 ) THEN ! OLD VERSION use incomplete gamma functions to approximate the bin results @@ -15434,7 +18699,7 @@ subroutine nssl_2mom_gs & chmlr(mgs) = max( chmlr(mgs), Min( -chmxd(mgs), -0.95*cx(mgs,lh)*dtpinv ) ) ENDIF ! qhmlr(mgs) = max( max( qhmlr(mgs), -qhmxd(mgs) ) , -0.5*qx(mgs,lh)*dtpinv ) !limits to 1/2 qh or max depletion - qhmlh(mgs) = 0. + qhmlh(mgs) = 0. ! not used ! Rasmussen and Heymsfield say melt water remains on graupel up to 9 mm before shedding @@ -15511,8 +18776,15 @@ subroutine nssl_2mom_gs & ! ENDIF - IF ( chmlr(mgs) < 0.0 .and. (ibinhmlr < 1 .or. lzh < 1) ) THEN ! { already done if ibinhmlr > 0 + IF ( ipconc >= 6 .and. lzr .gt. 1 .and. lzh < 1 .and. qx(mgs,lh) > qxmin(lh) ) THEN ! Only compute if rain is 3-moment but graupel is not, otherwise is computed later + tmp = qx(mgs,lh)/cx(mgs,lh) + alp = alpha(mgs,lh) + g1 = g1x(mgs,lh) ! (6.0 + alp)*(5.0 + alp)*(4.0 + alp)/((3.0 + alp)*(2.0 + alp)*(1.0 + alp)) + + zhmlr(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lh)))**2*( 2.*tmp * qhmlr(mgs) - tmp**2 * chmlr(mgs) ) + + ENDIF IF ( ibinhmlr == 0 .or. lzh < 1 ) THEN IF ( ihmlt .eq. 1 ) THEN @@ -15618,6 +18890,17 @@ subroutine nssl_2mom_gs & ENDIF !} + IF ( ipconc >= 8 .and. lzhl .gt. 1 .and. ibinhlmlr <= 0 ) THEN + IF ( cx(mgs,lhl) > 0.0 ) THEN + + tmp = qx(mgs,lhl)/cx(mgs,lhl) + alp = alpha(mgs,lhl) +! g1 = (6.0 + alp)*(5.0 + alp)*(4.0 + alp)/((3.0 + alp)*(2.0 + alp)*(1.0 + alp)) + g1 = g1x(mgs,lhl) ! (6.0 + alp)*(5.0 + alp)*(4.0 + alp)/((3.0 + alp)*(2.0 + alp)*(1.0 + alp)) + + zhlmlr(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lhl)))**2*( tmp * qhlmlr(mgs) ) + ENDIF + ENDIF ENDIF ! } ENDIF ! }.not. mixedphase @@ -15655,6 +18938,7 @@ subroutine nssl_2mom_gs & ENDDO ! ! + qhdsv(:) = 0.0 qhldsv(:) = 0.0 do mgs = 1,ngscnt @@ -15664,6 +18948,7 @@ subroutine nssl_2mom_gs & & fvds(mgs)*cx(mgs,li)*civent(mgs)*cicap(mgs)*depfac qsdsv(mgs) = & & fvds(mgs)*cx(mgs,ls)*swvent(mgs)*swcap(mgs)*depfac + ! IF ( ny .eq. 2 .and. igs(mgs) .eq. 302 .and. temg(mgs) .le. tfrh+10 .and. qx(mgs,lv) .gt. qis(mgs) ! : .and. qx(mgs,li) .gt. qxmin(li) ) THEN ! write(0,*) 'qidsv = ',nstep,kgs(mgs),qidsv(mgs),temg(mgs)-tfrh,100.*(qx(mgs,lv)/qis(mgs) - 1.),1.e6*xdia(mgs,li,1), @@ -15900,20 +19185,41 @@ subroutine nssl_2mom_gs & ! end of qlimit + qhcev(:) = 0.0 + chcev(:) = 0.0 + qhlcev(:) = 0.0 + chlcev(:) = 0.0 + qfcev(:) = 0.0 + do mgs = 1,ngscnt qisbv(mgs) = 0.0 qssbv(mgs) = 0.0 qidpv(mgs) = 0.0 qsdpv(mgs) = 0.0 + qhsbv(mgs) = 0.0 + qscev(mgs) = 0.0 + cscev(mgs) = 0.0 IF ( icond .eq. 1 .or. temg(mgs) .le. tfrh & - & .or. (qx(mgs,lr) .le. qxmin(lr) .and. qx(mgs,lc) .le. qxmin(lc)) ) THEN + & .or. (qx(mgs,lr) .le. qxmin(lr) .and. qx(mgs,lc) .le. qxmin(lc)) ) THEN ! last condition (qr qxmin(lh) ) THEN + IF ( temg(mgs) < tfr .or. .not. qhmlr(mgs) < 0.0 ) THEN + ! no liquid from melting, so evaporation is greater. Thus can calculate sublimation rate qhsbv(mgs) = max( min(qhdsv(mgs), 0.0), -qhmxd(mgs) ) - qhdpv(mgs) = Max(qhdsv(mgs), 0.0) + ENDIF + + IF ( .true. .and. qhmlr(mgs) < 0.0 .and. .not. mixedphase ) THEN + ! Liquid is forming, so find the evaporation that was subtracted from melting (if it is not condensing) +! qhcev(mgs) = & +! & evapfac*min( & +! & fmlt1e(mgs)*cx(mgs,lh)*hwvent(mgs)*xdia(mgs,lh,1), 0.0 ) + + qhcev(mgs) = evapfac*2.0*pi*(qx(mgs,lv)-qss0(mgs))* & + & cx(mgs,lh)*xdia(mgs,lh,1)*hwvent(mgs)/(qss0(mgs)*(fav(mgs)+fbv(mgs))) + + qhcev(mgs) = max(qhcev(mgs), -qhmxd(mgs)) + IF ( temg(mgs) > tfr ) qhcev(mgs) = Min(0.0, qhcev(mgs) ) + + ENDIF + ENDIF qhlsbv(mgs) = 0.0 qhldpv(mgs) = 0.0 IF ( lhl .gt. 1 ) THEN + IF ( qx(mgs,lhl) > qxmin(lhl) ) THEN + IF ( temg(mgs) < tfr .or. .not. qhlmlr(mgs) < 0.0 ) THEN qhlsbv(mgs) = max( min(qhldsv(mgs), 0.0), -qxmxd(mgs,lhl) ) qhldpv(mgs) = Max(qhldsv(mgs), 0.0) + ENDIF + IF ( qhlmlr(mgs) < 0.0 .and. .not. mixedphase ) THEN + ! Liquid is forming, so find the evaporation that was subtracted from melting (if it is not condensing) + qhlcev(mgs) = evapfac*2.0*pi*(qx(mgs,lv)-qss0(mgs))* & + & cx(mgs,lhl)*xdia(mgs,lhl,1)*hlvent(mgs)/(qss0(mgs)*(fav(mgs)+fbv(mgs))) + + qhlcev(mgs) = max(qhlcev(mgs), -qhlmxd(mgs)) + IF ( temg(mgs) > tfr ) qhlcev(mgs) = Min(0.0, qhlcev(mgs) ) + + ENDIF + ENDIF ENDIF temp1 = qidpv(mgs) + qsdpv(mgs) + qhdpv(mgs) + qhldpv(mgs) @@ -16068,6 +19407,10 @@ subroutine nssl_2mom_gs & end if end do + + + + ! ! ! compute dry growth rate of snow, graupel, and hail @@ -16094,7 +19437,7 @@ subroutine nssl_2mom_gs & ! do mgs = 1,ngscnt - IF ( temg(mgs) < tfr ) THEN + IF ( tfrdry < temg(mgs) .and. temg(mgs) < tfr ) THEN ! ! qswet(mgs) = ! > ( xdia(mgs,ls,1)*swvent(mgs)*cx(mgs,ls)*fwet1(mgs) @@ -16105,31 +19448,39 @@ subroutine nssl_2mom_gs & ! IF ( dnu(lh) .ne. 0. ) THEN ! qhwet(mgs) = qhdry(mgs) ! ELSE + IF ( incwet == 0 ) THEN qhwet(mgs) = & & ( xdia(mgs,lh,1)*hwvent(mgs)*cx(mgs,lh)*fwet1(mgs) & & + fwet2(mgs)*(qhaci(mgs) + qhacs(mgs)) ) qhwet(mgs) = max( 0.0, qhwet(mgs)) + ELSE + ENDIF + ! ENDIF qhlwet(mgs) = 0.0 IF ( lhl .gt. 1 ) THEN - qhlwet(mgs) = & - & ( xdia(mgs,lhl,1)*hlvent(mgs)*cx(mgs,lhl)*fwet1(mgs) & - & + fwet2(mgs)*(qhlaci(mgs) + qhlacs(mgs)) ) - qhlwet(mgs) = max( 0.0, qhlwet(mgs)) + IF ( incwet == 0 ) THEN + qhlwet(mgs) = & + & ( xdia(mgs,lhl,1)*hlvent(mgs)*cx(mgs,lhl)*fwet1(mgs) & + & + fwet2(mgs)*(qhlaci(mgs) + qhlacs(mgs)) ) + qhlwet(mgs) = max( 0.0, qhlwet(mgs)) + + ELSE + ENDIF ! incwet ENDIF ELSE qhwet(mgs) = qhdry(mgs) qhlwet(mgs) = qhldry(mgs) - ENDIF ! ! qhlwet(mgs) = qhldry(mgs) end do + ! ! shedding rate ! @@ -16189,7 +19540,7 @@ subroutine nssl_2mom_gs & qhshr(mgs) = -qhdry(mgs) qhlshr(mgs) = -qhldry(mgs) ELSE ! new and correct - + ! note that the qxacr terms should be zero here, so shedding at T > 0 is all from the droplets qsshr(mgs) = - qsacr(mgs) - qsacw(mgs) ! -qsdry(mgs) qhlshr(mgs) = - qhlacw(mgs) - qhlacr(mgs) ! -qhldry(mgs) qhshr(mgs) = - qhacw(mgs) - qhacr(mgs) ! -qhdry(mgs) @@ -16280,6 +19631,8 @@ subroutine nssl_2mom_gs & IF ( lvol(lh) .gt. 1 .and. .not. mixedphase) THEN ! rescale volumes to maximum density + IF ( iwetsoak ) THEN + rimdn(mgs,lh) = xdnmx(lh) raindn(mgs,lh) = xdnmx(lh) vhacw(mgs) = qhacw(mgs)*rho0(mgs)/rimdn(mgs,lh) @@ -16293,7 +19646,10 @@ subroutine nssl_2mom_gs & v2 = rho0(mgs)*qhwet(mgs)/xdnmx(lh) ! volume of frozen accretion vhsoak(mgs) = Min(v1,v2) + + ENDIF + ENDIF vhshdr(mgs) = Min(0.0, rho0(mgs)*qhwet(mgs)/xdnmx(lh) - vhacw(mgs) - vhacr(mgs) ) @@ -16349,6 +19705,8 @@ subroutine nssl_2mom_gs & IF ( lvol(lhl) .gt. 1 .and. .not. mixedphase ) THEN ! IF ( lvol(lhl) .gt. 1 .and. wetgrowthhl(mgs) ) THEN + IF ( iwetsoak ) THEN + rimdn(mgs,lhl) = xdnmx(lhl) raindn(mgs,lhl) = xdnmx(lhl) vhlacw(mgs) = qhlacw(mgs)*rho0(mgs)/rimdn(mgs,lhl) @@ -16372,6 +19730,8 @@ subroutine nssl_2mom_gs & ! vhlacw(mgs) = 0.0 ! vhlacr(mgs) = rho0(mgs)*qhlwet(mgs)/raindn(mgs,lhl) + ENDIF + ENDIF vhlshdr(mgs) = Min(0.0, rho0(mgs)*qhlwet(mgs)/xdnmx(lhl) - vhlacw(mgs) - vhlacr(mgs) ) @@ -16516,7 +19876,93 @@ subroutine nssl_2mom_gs & ltest = xdia(mgs,lh,1)*(4. + alpha(mgs,lh)) > Abs( hlcnhdia ) ! test on mass-weighted diameter ENDIF - dg0(mgs) = -1. + IF ( iusedw == 0 .and. ihlcnh == 1 ) THEN + dg0(mgs) = -1. + ELSE + IF (((qhacw(mgs) + qhacr(mgs))*dtp > qxmin(lh) .and. qx(mgs,lh) > hlcnhqmin .and. temg(mgs) .le. tfr-2.0 & + .and. temg(mgs) .gt. dwtempmin ) .or. ( wetgrowth(mgs) .and. qx(mgs,lh) > hlcnhqmin ) ) THEN +! dw = 0.01*( Exp( -temcg(mgs)/( 1.1e4 * rho0(mgs)*ehw(mgs)*qx(mgs,lc) - 1.3e3*rho0(mgs)*qx(mgs,li) + 1.0 ) ) - 1.0 ) +! dwr = 0.01*( Exp( -temcg(mgs)/( 1.1e4 * rho0(mgs)*(ehw(mgs)*qx(mgs,lc)+ehr(mgs)*qx(mgs,lr)) - & +! 1.3e3*rho0(mgs)*qx(mgs,li) + 1.0 ) ) - 1.0 ) + x = 1.1e4 * rho0(mgs)*(ehw(mgs)*qx(mgs,lc)+ehr(mgs)*qx(mgs,lr)) - & + 1.3e3*rho0(mgs)*qx(mgs,li) + 1.0 + IF ( x > 1.e-20 ) THEN + arg = Min(70.0, (-temcg(mgs)/x )) ! prevent overflow of the exp function in 32 bit + dwr = 0.01*(exp(arg) - 1.0) + ELSE + dwr = 1.e30 + ENDIF + d = dwr + IF ( dwr < 0.2 .and. dwr > 0.0 .and. rho0(mgs)*(qx(mgs,lc)+qx(mgs,lr)) > 1.e-4 ) THEN + sqrtrhovt = Sqrt( rhovt(mgs) ) + fventh = sqrtrhovt*(fpndl(mgs)**(1./3.)) * (fakvisc(mgs))**(-0.5) + fventm = sqrtrhovt*(fschm(mgs)**(1./3.)) * (fakvisc(mgs))**(-0.5) + ltemq = (tfr-163.15)/fqsat+1.5 + qvs0 = pqs(mgs)*tabqvs(ltemq) + denomdp = felf(mgs) + fcw(mgs)*temcg(mgs) + denominvdp = 1.d0/(felf(mgs) + fcw(mgs)*temcg(mgs)) + +! write(91,*) 'dw,dwr,temcg = ',100.*dw,100.*dwr,temcg(mgs) + h1 = ( -ftka(mgs)*temcg(mgs) - felv(mgs)*fwvdf(mgs)*rho0(mgs)*(qx(mgs,lv) - qvs0) ) + h2 = ehi(mgs)*qx(mgs,li)*rho0(mgs)*fci(mgs)*temcg(mgs) + h3 = Max(dwehwmin, ehw(mgs))*qx(mgs,lc) + h4 = ehr(mgs)* qx(mgs,lr) + ! iterate to find minimum diameter for wet growth. Start with value of dwr + DO n = 1,10 + d = Max(d, 1.e-4) + dold = d + vth = axx(mgs,lh)*d**bxx(mgs,lh) + x2 = fventh*sqrtrhovt*Sqrt(d*vth) + IF ( x2 > 1.4 ) THEN + ah = 0.78 + 0.308*x2 ! heat ventillation + ELSE + ah = 1.0 + 0.108*x2**2 ! mass ventillation (Beard and Pruppacher 1971, eq. 9) + ENDIF + + IF ( .false. ) THEN ! this option includes 'am' separate from ah, which makes only small differences. Otherwise equivalent to second option + x1 = fventm*sqrtrhovt*Sqrt(d*vth) + IF ( x1 > 1.4 ) THEN + am = 0.78 + 0.308*x1 ! mass ventillation (Beard and Pruppacher 1971, eq. 8) + ELSE + am = 1.0 + 0.108*x1**2 ! mass ventillation (Beard and Pruppacher 1971, eq. 9) + ENDIF + + d = 8.*denominvdp*( am*felv(mgs)*fwvdf(mgs)*rho0(mgs)*(qvs0 - qx(mgs,lv)) - ah*ftka(mgs)*temcg(mgs) )/ & + (dtp* ( ( Max(0.001,vth - vtxbar(mgs,lc,1))*h3 + & + Max(0.001,vth - vtxbar(mgs,lr,1))*h4) *rho0(mgs) + & + Max(0.001,vth - vtxbar(mgs,li,1))*h2*denominvdp)) + + ELSE + + ! Based on Farley and Orville (1986), eq. 5-9 but neglecting the Ci*(T0-Ts) term in (8) since we want Ts=T0 + ! Simplified mass rates as dm_w/dt = pi/4*d**2*(Vh - Vc)*rhoair*qc*ehw, etc. + d = 8.*ah*h1/ & + ( ( Max(0.001,vth - vtxbar(mgs,lc,1))*h3 + & + Max(0.001,vth - vtxbar(mgs,lr,1))*h4) *rho0(mgs)*denomdp + & + Max(0.001,vth - vtxbar(mgs,li,1))*h2) + + ENDIF + IF ( Abs(dold - d)/dold < 0.05 .or. ( n > 3 .and. d > dg0thresh ) ) EXIT + + ENDDO + ENDIF + + dg0(mgs) = Min( dwmax, Max( d, dwmin ) ) + ELSE + IF ( qx(mgs,lh) > qxmin(lh) .and. qx(mgs,lh) > hlcnhqmin .and. temg(mgs) .le. tfr-2.0 ) THEN + dg0(mgs) = dwmax + ELSE + dg0(mgs) = dg0thresh + 0.0001 + ENDIF + ENDIF + + IF ( ihlcnh == 3 .and. (qhacw(mgs) + qhacr(mgs))*dtp > qxmin(lh) .and. qx(mgs,lh) > hlcnhqmin & + .and. temg(mgs) .le. tfr-2.0 ) THEN + ! set a secondary condition on to capture large graupel that is riming but not in wet growth + dg0(mgs) = Min( dg0(mgs), dg0thresh - 0.0001 ) + ENDIF + + ENDIF wtest = (dg0(mgs) > 0.0 .and. dg0(mgs) < dg0thresh ) @@ -16551,18 +19997,6 @@ subroutine nssl_2mom_gs & tmp = qhacw(mgs) + qhacr(mgs) + qhaci(mgs) + qhacs(mgs) ! qtmp = Min( 1.0, xdia(mgs,lh,3)/(2.0*dh0) )*(tmp) qtmp = Min( 100.0, xdia(mgs,lh,3)/(2.0*dh0) )*(tmp) -! IF ( .false. .and. qx(mgs,lhl) + qtmp*dtp .lt. 0.5e-3 ) THEN -! hdia1 = Max(dh0, xdia(mgs,lh,3) ) -! qtmp = qtmp + Min(qxmxd(mgs,lh), Max( 0.0, & -! & ((pi*xdn(mgs,lh)*cx(mgs,lh)) / (6.0*rho0(mgs)*dtp)) & -! & *exp(-hdia1/xdia(mgs,lh,1)) & -! & *( (hdia1**3) + 3.0*(hdia1**2)*xdia(mgs,lh,1) & -! & + 6.0*(hdia1)*(xdia(mgs,lh,1)**2) + 6.0*(xdia(mgs,lh,1)**3) ) ) ) - -! ENDIF - -! qhlcnh(mgs) = Min( 0.5*(qx(mgs,lh))+tmp, xdia(mgs,lh,3)/(2.0*dh0)*(tmp) ) -! qhlcnh(mgs) = Min( qxmxd(mgs,lh), xdia(mgs,lh,3)/(2.0*dh0)*(tmp) ) qhlcnh(mgs) = Min( qxmxd(mgs,lh), qtmp ) IF ( ipconc .ge. 5 ) THEN !{ @@ -16572,8 +20006,6 @@ subroutine nssl_2mom_gs & chlcnhhl(mgs) = Min( cxmxd(mgs,lh), rho0(mgs)*qhlcnh(mgs)/(pi*xdn(mgs,lh)*dh0**3/6.0) ) r = rho0(mgs)*qhlcnh(mgs)/(xdn(mgs,lh)*xv(mgs,lh)) ! number of graupel particles at mean volume diameter -! chlcnh(mgs) = Min( Max( 1./8.*r , chlcnh(mgs)), r ) -! chlcnh(mgs) = Min( chlcnh(mgs), r ) chlcnh(mgs) = Max( chlcnhhl(mgs), r ) ENDIF !} @@ -16588,12 +20020,119 @@ subroutine nssl_2mom_gs & ELSEIF ( ihlcnh == 3 ) THEN !{ + IF ( wtest .and. & + ( qhacw(mgs)*dtp > qxmin(lh) .and. temg(mgs) .lt. tfr-2. .and. qx(mgs,lh) > hlcnhqmin ) ) THEN + ! convert number, mass, and reflectivity for d > dw + IF ( ipconc == 5 ) THEN + ! dg0(mgs) = Min( dg0(mgs), hldia1 ) + !dg0(mgs) = hldia1 + ENDIF + + ratio = Min( maxratiolu, dg0(mgs)/xdia(mgs,lh,1) ) + + + ! mass + tmp2 = gaminterp(ratio,alpha(mgs,lh),4,1) + IF ( ipconc == 5 ) THEN + ! tmp2 = Min( 0.25, tmp2 ) + ENDIF + qxd1 = qx(mgs,lh)*(tmp2) + qhlcnh(mgs) = dtpinv*qxd1 + flim = 1.0 + tmp3 = qxmxd(mgs,lh) + IF (qxd1 > tmp3 ) THEN +! flim = tmp3/(qxd1) +! qhlcnh(mgs) = flim*qhlcnh(mgs) + ENDIF + + + + IF ( ( qxd1 > qxmin(lhl) .and. ipconc > 5 ) .or. ( qxd1 > 10.*qxmin(lhl) .and. ipconc == 5) ) THEN + + ! number + tmp = gaminterp(ratio,alpha(mgs,lh),1,1) + IF ( ipconc == 5 ) THEN + ! tmp = Min( 0.2, tmp ) + ENDIF + cxd1 = flim*cx(mgs,lh)*( tmp) + chlcnh(mgs) = dtpinv*cxd1 + chlcnhhl(mgs) = chlcnh(mgs) + + IF ( qx(mgs,lhl) > qxmin(lhl) .and. dmhlopt > 0 ) THEN + tmp = rho0(mgs)*qhlcnh(mgs)/chlcnhhl(mgs) + IF ( tmp < xmas(mgs,lhl) ) THEN + ! dh0 = ( qxd1*dh0 + qx(mgs,lhl)*xmas(mgs,lhl))/( qxd1 + qx(mgs,lhl)) ! weighted average + dh0 = (( qxd1*tmp**(1./3.) + qx(mgs,lhl)*xmas(mgs,lhl)**(1./3.))/( qxd1 + qx(mgs,lhl)))**3 ! weighted average + chlcnhhl(mgs) = Min( chlcnhhl(mgs), rho0(mgs)*qhlcnh(mgs)/dh0 ) + ELSE +! dh0 = Max( dh0, xmas(mgs,lhl) ) ! when enough hail is established, do not dilute the size + ENDIF + ENDIF + + + ! reflectivity + IF ( ipconc >= 6 .and. lzh > 1 .and. lzhl > 1 ) THEN + tmp3 = gaminterp(ratio,alpha(mgs,lh),11,1) + zxd1 = flim*zx(mgs,lh)*(tmp3) + zhlcnh(mgs) = dtpinv*zxd1 + ELSE + zxd1 = 0 + ENDIF + + ELSE + qhlcnh(mgs) = 0.0 + ENDIF + + vhlcnh(mgs) = rho0(mgs)*qhlcnh(mgs)/xdn(mgs,lh) + vhlcnhl(mgs) = rho0(mgs)*qhlcnh(mgs)/Max(xdnmn(lhl), xdn(mgs,lh)) + + ENDIF + + ENDIF !} ENDDO ELSEIF ( ihlcnh == 2 ) THEN ! 10-ice type conversion +! +! Staka and Mansell (2005) type conversion +! +! hldia1 is set in micro_module and namelist +! IF ( .true. ) THEN + + ! convert number, mass, and reflectivity for d > hldia1, + ! regardless of wet growth status, but as long as riming > 0 + DO mgs = 1,ngscnt + IF ( qhacw(mgs)*dtp > qxmin(lh) .and. temg(mgs) .lt. tfr-2. .and. qx(mgs,lh) > qxmin(lh) ) THEN + ratio = Min( maxratiolu, hldia1/xdia(mgs,lh,1) ) + + ! number + tmp = gaminterp(ratio,alpha(mgs,lh),1,1) + cxd1 = cx(mgs,lh)*( tmp) + chlcnh(mgs) = dtpinv*cxd1 + chlcnhhl(mgs) = chlcnh(mgs) + + ! mass + tmp2 = gaminterp(ratio,alpha(mgs,lh),4,1) + qxd1 = qx(mgs,lh)*(tmp2) + qhlcnh(mgs) = dtpinv*qxd1 + + ! reflectivity + IF ( lzh > 1 .and. lzhl > 1 ) THEN + tmp3 = gaminterp(ratio,alpha(mgs,lh),11,1) + zxd1 = zx(mgs,lh)*(tmp3) + zhlcnh(mgs) = dtpinv*zxd1 + ELSE + zxd1 = 0 + ENDIF + vhlcnh(mgs) = rho0(mgs)*qhlcnh(mgs)/xdn(mgs,lh) + vhlcnhl(mgs) = rho0(mgs)*qhlcnh(mgs)/Max(xdnmn(lhl), xdn(mgs,lh)) + + ENDIF + + ENDDO +! ENDIF ELSEIF ( ihlcnh == 0 ) THEN do mgs = 1,ngscnt @@ -16829,6 +20368,10 @@ subroutine nssl_2mom_gs & ciacrf(mgs) = qrzfac(mgs)*ciacrf(mgs) ciacrs(mgs) = qrzfac(mgs)*ciacrs(mgs) +! IF ( lzh .gt. 1 ) THEN +! zrfrzf(mgs) = 3.6476*rho0(mgs)**2*(alpha(mgs,lr)+2.)/(xdn0(lr)**2*(alpha(mgs,lr)+1.)) * & +! ( 2.*tmp * qrfrzf(mgs) - tmp**2 * crfrzf(mgs) ) +! ENDIF vrfrzf(mgs) = qrzfac(mgs)*vrfrzf(mgs) viacrf(mgs) = qrzfac(mgs)*viacrf(mgs) @@ -16868,7 +20411,13 @@ subroutine nssl_2mom_gs & IF ( qrcev(mgs) .lt. 0. .and. lnr > 1 ) THEN ! qrcev(mgs) = -qrmxd(mgs) ! crcev(mgs) = (rho0(mgs)/(xmas(mgs,lr)+1.e-20))*qrcev(mgs) - crcev(mgs) = (cx(mgs,lr)/(qx(mgs,lr)))*qrcev(mgs) + IF ( icrcev == 1 ) THEN + crcev(mgs) = (cx(mgs,lr)/(qx(mgs,lr)))*qrcev(mgs) + ELSEIF ( icrcev == 2 ) THEN + crcev(mgs) = (cx(mgs,lr)/(qx(mgs,lr)))*qrcev(mgs)*vtxbar(mgs,lr,2)/vtxbar(mgs,lr,1) + ELSE + crcev(mgs) = 0.0 + ENDIF ELSE crcev(mgs) = 0.0 ENDIF @@ -16880,12 +20429,6 @@ subroutine nssl_2mom_gs & ! ! evaporation/condensation of wet graupel and snow ! - qscev(:) = 0.0 - cscev(:) = 0.0 - qhcev(:) = 0.0 - chcev(:) = 0.0 - qhlcev(:) = 0.0 - chlcev(:) = 0.0 IF ( lhwlg > 1 ) THEN qhcevlg(:) = 0.0 chcevlg(:) = 0.0 @@ -16895,6 +20438,7 @@ subroutine nssl_2mom_gs & chlcevlg(:) = 0.0 ENDIF + ! ! ! @@ -17711,9 +21255,11 @@ subroutine nssl_2mom_gs & & + chsbv(mgs) & & - il5(mgs)*chlcnh(mgs) & & - cscnh(mgs) + end do + ! ! @@ -17840,6 +21386,14 @@ subroutine nssl_2mom_gs & pqlwlghld(:) = 0.0 pqlwhli(:) = 0.0 pqlwhld(:) = 0.0 + IF ( ipconc > 5 ) THEN + pzhwi(:) = 0.0 + pzhwd(:) = 0.0 + pzrwi(:) = 0.0 + pzrwd(:) = 0.0 + pzhli(:) = 0.0 + pzhld(:) = 0.0 + ENDIF ! @@ -18078,7 +21632,8 @@ subroutine nssl_2mom_gs & qrcev(mgs) = frac*qrcev(mgs) qhlacr(mgs) = frac*qhlacr(mgs) vhlacr(mgs) = frac*vhlacr(mgs) -! qhcev(mgs) = frac*qhcev(mgs) + qhcev(mgs) = frac*qhcev(mgs) + qhlcev(mgs) = frac*qhlcev(mgs) IF ( warmonly < 0.5 ) THEN @@ -18124,6 +21679,8 @@ subroutine nssl_2mom_gs & ! STOP ENDIF + + end do IF ( warmonly < 0.5 ) THEN @@ -18152,7 +21709,7 @@ subroutine nssl_2mom_gs & & -qhcns(mgs) & & +(1-il5(mgs))*qsmlr(mgs) + qsshr(mgs) & !null at this point when wet snow included ! > +il5(mgs)*(qssbv(mgs)) & - & + (qssbv(mgs)) & + & + qssbv(mgs) & & + Min(0.0, qscev(mgs)) & & -qsmul(mgs) @@ -18267,53 +21824,634 @@ subroutine nssl_2mom_gs & & +(1-il5(mgs))*qhmlr(mgs) !null at this point when wet graupel included end do -! -! Hail -! - IF ( lhl .gt. 1 ) THEN +! +! Hail +! + IF ( lhl .gt. 1 ) THEN + + do mgs = 1,ngscnt + pqhli(mgs) = & + & +il5(mgs)*(qhldpv(mgs) ) & ! + (1.0-ifrzg)*(qiacrf(mgs)+qrfrzf(mgs) + qracif(mgs))) & + & +il5(mgs)*(1.0-ifrzg)*(qrfrzf(mgs) ) & + & +qhlacr(mgs)+qhlacw(mgs) & +! & +qhlacs(mgs)+qhlaci(mgs) & + & + qhlcnh(mgs) + pqhld(mgs) = & + & qhlshr(mgs) & + & +(1-il5(mgs))*qhlmlr(mgs) & +! > +il5(mgs)*qhlsbv(mgs) & + & + qhlsbv(mgs) & + & -qhlmul1(mgs) - qhcnhl(mgs) + + end do + + ENDIF ! lhl + + ENDIF ! warmonly + +! +! Liquid water on snow and graupel +! + + vhmlr(:) = 0.0 + vhlmlr(:) = 0.0 + vhfzh(:) = 0.0 + vhlfzhl(:) = 0.0 + + IF ( mixedphase ) THEN + ELSE ! set arrays for non-mixedphase graupel + +! vhshdr(:) = 0.0 + vhmlr(:) = qhmlr(:) ! not actually volume, but treated as q in rate equation +! vhsoak(:) = 0.0 + +! vhlshdr(:) = 0.0 + vhlmlr(:) = qhlmlr(:) ! not actually volume, but treated as q in rate equation +! vhlmlr(:) = rho0(:)*qhlmlr(:)/xdn(:,lhl) +! vhlsoak(:) = 0.0 + + ENDIF ! mixedphase + + + +! +! Graupel reflectivity +! + if (ndebug .gt. 0 .and. my_rank>=0 ) write(0,*) my_rank, 'graupel reflectivity' + + do mgs = 1,ngscnt + +! zhmlr(mgs) = 0.0 +! zhshr(mgs) = 0.0 +! zhmlrr(mgs) = 0.0 +! zhshrr(mgs) = 0.0 + zhdsv(mgs) = 0.0 +! IF ( lf < 1 ) THEN + IF ( ffrzh > 0.0 ) THEN + ziacr(mgs) = 0.0 + ziacrf(mgs) = 0.0 + ENDIF +! ENDIF + zhcns(mgs) = 0.0 + zhcni(mgs) = 0.0 + zhacs(mgs) = 0.0 + zhaci(mgs) = 0.0 + + ENDDO + + IF ( lzh .gt. 1 ) THEN ! + do mgs = 1,ngscnt + + + IF ( qx(mgs,lh) .gt. qxmin(lh) .and. cx(mgs,lh) .gt. 0.0 ) THEN + tmp = qx(mgs,lh)/cx(mgs,lh) + alp = Max( alphamin, alpha(mgs,lh) ) +! g1 = (6.0 + alp)*(5.0 + alp)*(4.0 + alp)/((3.0 + alp)*(2.0 + alp)*(1.0 + alp)) + g1 = g1x(mgs,lh) ! (6.0 + alp)*(5.0 + alp)*(4.0 + alp)/((3.0 + alp)*(2.0 + alp)*(1.0 + alp)) +! g1r = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + + zhaci(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lh)))**2*( 2.*( tmp ) * qhaci(mgs) ) + zhacs(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lh)))**2*( 2.*( tmp ) * qhacs(mgs) ) + + IF ( .not. mixedphase .and. ibinhmlr < 1 ) THEN + zhmlr(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lh)))**2*( 2.*tmp * qhmlr(mgs) - tmp**2 * chmlr(mgs) ) + ENDIF + + zhshr(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lh)))**2*( 2.*tmp * qhshr(mgs) - tmp**2 * chshr(mgs) ) + +! IF ( lzr > 0 .and. qhshr(mgs) /= 0.0 .and. chshrr(mgs) /= 0.0 .and. ibinhmlr < 1 ) THEN + IF ( lzr > 0 .and. qhshr(mgs) /= 0.0 .and. chshrr(mgs) /= 0.0 ) THEN +! IF ( temg(mgs) > tfr + 2.0 ) THEN +! zhshrr(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( 2.*tmp * qhshr(mgs) - tmp**2 * chshrr(mgs) ) +! IF ( zhshrr(mgs) > 0. ) THEN +! zhshrr(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( 2.*tmp * qhshr(mgs) - tmp**2 * chshr(mgs) ) +! ENDIF +! z1 = g1shr*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( qhshr(mgs)**2/ chshrr(mgs) ) ! should this be g1shr? +! zhshrr(mgs) = Max( z1, zhshrr(mgs)) +! ELSE +! zhshrr(mgs) = g1shr*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( qhshr(mgs)**2/ chshrr(mgs) ) + + + IF ( temg(mgs) >= tfr ) THEN + ! zhshrr(mgs) = g1*(6.*rho0(mgs)/(pi*xdn0(lr)))**2*( 2.*tmp * qhshr(mgs) - tmp**2 * chshrr(mgs) ) + ! IF ( zhshrr(mgs) > 0.0 ) THEN + ! zhshrr(mgs) = g1*(6.*rho0(mgs)/(pi*xdn0(lr)))**2*( 2.*tmp * qhshr(mgs) - tmp**2 * chshr(mgs) ) + ! ENDIF + IF ( (shedalp + alpha(mgs,lh))*xdia(mgs,lh,1) < sheddiam ) THEN ! if not shedding small drops, then use alpha of hail + z1 = g1*(6.0*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( qhshr(mgs)**2/ chshrr(mgs) ) + ELSE + z1 = g1shr*(6.0*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( qhshr(mgs)**2/ chshrr(mgs) ) ! should this be g1shr? + ENDIF + zhshrr(mgs) = z1 +! z1 = g1mlr*(rho0(mgs)/(xdn(mgs,lr)))**2*( qhshr(mgs)**2/ chshrr(mgs) ) ! should this be g1shr? +! zhshrr(mgs) = Max( z1, zhshrr(mgs)) + ELSE + zhshrr(mgs) = g1shr*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( qhshr(mgs)**2/ chshrr(mgs) ) + ENDIF + + zhshrr(mgs) = Min( 0.0, zhshrr(mgs) ) + ENDIF + + IF ( zhshr(mgs) > 0.0 ) THEN + write(0,*) 'Problem with zhshr! zhshr,qhshr,chshr = ',zhshr(mgs),qhshr(mgs),chshr(mgs) + write(0,*) 'g1,tmp, qx,cx,zx = ',g1,tmp,qx(mgs,lh),cx(mgs,lh),zx(mgs,lh) + write(0,*) ( 2.*tmp * qhshr(mgs) - tmp**2 * chshr(mgs) ), 2.*tmp * qhshr(mgs), - tmp**2 * chshr(mgs) + write(0,*) 'temcg = ',temcg(mgs),'chshr recalc = ',(cx(mgs,lh)/(qx(mgs,lh)+1.e-20))*qhshr(mgs) + + STOP + ENDIF + + +! zhshr(mgs) = (xdn0(lr)/(xdn(mgs,lh)))**2*( zx(mgs,lh) * qhshr(mgs) ) + + qtmp = qhdpv(mgs) + qhcev(mgs) + qhsbv(mgs) + ctmp = chdpv(mgs) + chcev(mgs) + chsbv(mgs) + + zhdsv(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lh)))**2*( 2.*( tmp ) * qtmp - tmp**2 * ctmp ) + + alp = Max( alphahacx, alpha(mgs,lh) ) +! g1 = (6.0 + alp)*(5.0 + alp)*(4.0 + alp)/((3.0 + alp)*(2.0 + alp)*(1.0 + alp)) + g1 = g1x(mgs,lh) ! (6.0 + alp)*(5.0 + alp)*(4.0 + alp)/((3.0 + alp)*(2.0 + alp)*(1.0 + alp)) + + IF ( .true. ) THEN ! { + IF ( qhacr(mgs) .gt. 0.0 ) THEN +! zhacr(mgs) = g1*(6.*rho0(mgs)/(pi*1000.))**2*( 2.*( qx(mgs,lh)/cx(mgs,lh)) * qhacr(mgs) ) + +! g1r = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) +! zhacr(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lh)))**2*( 2.*( qx(mgs,lh)/cx(mgs,lh)) * qhacr(mgs) ) + zhacr(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lh)))**2*( 2.*( qx(mgs,lh)/cx(mgs,lh)) * qhacr(mgs) ) +! zhacrf(mgs) = g1*zhacr + + +! z = g1*(6.*rho0(mgs)/(pi*1000.))**2*( (qx(mgs,lh)+dtp*qhacr(mgs))**2)/(cx(mgs,lh)) + + IF ( z > zx(mgs,lh) ) THEN +! zhacr(mgs) = (z - zx(mgs,lh))*dtpinv + ELSE +! zhacr(mgs) = 0.0 + ENDIF + ENDIF + +! zhacr(mgs) = g1*(6.*rho0(mgs)/(pi*1000.))**2*( 2.*( tmp ) * qhacr(mgs) ) +! zhacr(mgs) = g1*(6.*rho0(mgs)/(pi*1000.))**2*( 2.*( tmp ) * qhacr(mgs) - tmp**2 * chacr(mgs) ) + +! alp = Max( 1.0, alpha(mgs,lh)+1. ) +! g1 = (6.0 + alp)*(5.0 + alp)*(4.0 + alp)/ +! : ((3.0 + alp)*(2.0 + alp)*(1.0 + alp)) + IF ( qhacw(mgs) .gt. 0.0 ) THEN +! zhacw(mgs) = g1*(6.*rho0(mgs)/(pi*1000.))**2*( 2.*( qx(mgs,lh)/cx(mgs,lh)) * qhacw(mgs) ) + zhacw(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lh)))**2*( 2.*( qx(mgs,lh)/cx(mgs,lh)) * qhacw(mgs) ) + +! z = g1*(6.*rho0(mgs)/(pi*1000.))**2*( (qx(mgs,lh)+dtp*(qhacw(mgs)-qhmul1(mgs)))**2)/(cx(mgs,lh)) + IF ( z > zx(mgs,lh) ) THEN +! zhacw(mgs) = (z - zx(mgs,lh))*dtpinv + ENDIF + ENDIF + + ELSE ! } { ! this is not used because of the 'true' above + + IF ( qhacw(mgs) .gt. 0.0 .or. qhacr(mgs) .gt. 0.0 ) THEN + z = g1*(6.*rho0(mgs)/(pi*1000.))**2*( (qx(mgs,lh)+dtp*(qhacr(mgs) + qhacw(mgs)-qhmul1(mgs)))**2)/(cx(mgs,lh)) +! zhacw(mgs) = g1*(6.*rho0(mgs)/(pi*1000.))**2*( 2.*( qx(mgs,lh)/cx(mgs,lh)) * qhacw(mgs) ) + IF ( z > zx(mgs,lh) ) THEN + zhacw(mgs) = (z - zx(mgs,lh))*dtpinv + ENDIF + ENDIF + + ENDIF ! } + + IF ( qhlcnh(mgs) .gt. 0.0 .and. ihlcnh < 2 ) THEN + zhlcnh(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lh)))**2*( 2.*( tmp ) * qhlcnh(mgs) - tmp**2 * chlcnh(mgs) ) + ENDIF + ENDIF +! qsplinter(mgs) + IF ( ffrzh*qiacrf(mgs) .gt. 0.0 .and. cx(mgs,lr) .gt. 0.0 .and. qx(mgs,lr) .gt. qxmin(lr) ) THEN + tmp = qx(mgs,lr)/cx(mgs,lr) +! alp = 3.0 +! g1 = (6.0 + alp)*(5.0 + alp)*(4.0 + alp)/((3.0 + alp)*(2.0 + alp)*(1.0 + alp)) + IF ( imurain == 3 ) THEN + ! note that 3.6476 = (6/pi)**2 + ziacr(mgs) = 3.6476*rho0(mgs)**2*(alpha(mgs,lr)+2.)/(xdn0(lr)**2*(alpha(mgs,lr)+1.))* & + & ( 2.*tmp * qiacrf(mgs) - tmp**2 * ciacrf(mgs) ) + ELSE ! imurain == 1 + ziacr(mgs) = 3.6476*rho0(mgs)**2*g1x(mgs,lr)/(xdn0(lr)**2)* & + & ( 2.*tmp * qiacrf(mgs) - tmp**2 * ciacrf(mgs) ) + ENDIF + ziacr(mgs) = Min( ziacr(mgs), zxmxd(mgs,lr) ) +! ziacrf(mgs) = (xdn(mgs,lr)/xdn(mgs,lh))**2 * ziacr(mgs) + ziacrf(mgs) = (xdn(mgs,lr)/xdnmx(lh))**2 * ziacr(mgs) +! z = g1*(6.*rho0(mgs)/(pi*1000.))**2*( 2.*tmp * (qiacrf(mgs) - qsplinter(mgs)) - tmp**2 * ciacrf(mgs) ) +! ziacrf(mgs) = Min( ziacrf(mgs), z ) + ENDIF + + + + IF ( ffrzh*qrfrzf(mgs) .gt. 0.0 .and. cx(mgs,lr) .gt. 0.0 ) THEN + tmp = qx(mgs,lr)/cx(mgs,lr) +! alp = 3.0 +! g1 = (6.0 + alp)*(5.0 + alp)*(4.0 + alp)/((3.0 + alp)*(2.0 + alp)*(1.0 + alp)) + IF ( imurain == 3 ) THEN + zrfrz(mgs) = 3.6476*rho0(mgs)**2*(alpha(mgs,lr)+2.)/(xdn0(lr)**2*(alpha(mgs,lr)+1.)) * & + & ( 2.*tmp * qrfrzf(mgs) - tmp**2 * crfrzf(mgs) ) + zrfrzf(mgs) = (xdn(mgs,lr)/xdn(mgs,lh))**2 * zrfrz(mgs) + ELSEIF ( imurain == 1 .and. ibiggopt /= 2 ) THEN +! zrfrz(mgs) = 3.6476*rho0(mgs)**2*g1x(mgs,lr)/(xdn0(lr)**2) * & +! & ( 2.*tmp * qrfrzf(mgs) - tmp**2 * crfrz(mgs) ) + zrfrz(mgs) = 3.6476*rho0(mgs)**2*g1x(mgs,lr)/(xdn0(lr)**2) * & + & ( 2.*tmp * qrfrz(mgs) - tmp**2 * crfrz(mgs) ) + zrfrzf(mgs) = 3.6476*rho0(mgs)**2*g1x(mgs,lr)/(rhofrz**2) * & + & ( 2.*tmp * qrfrzf(mgs) - tmp**2 * crfrzf(mgs) ) + ENDIF + zrfrz(mgs) = Min( zrfrz(mgs), Max(0.4,qrfrz(mgs)/qx(mgs,lr))*zx(mgs,lr)*dtpinv ) +! zrfrzf(mgs) = (xdn(mgs,lr)/xdn(mgs,lh))**2 * zrfrz(mgs) +! zrfrzf(mgs) = (xdn(mgs,lr)/xdnmx(lh))**2 * zrfrz(mgs) +! z = g1*(6.*rho0(mgs)/(pi*1000.))**2*( 2.*tmp * (qrfrzf(mgs)-qsplinter2(mgs)) - tmp**2 * crfrzf(mgs) ) +! zrfrzf(mgs) = Min( zrfrzf(mgs), z ) + ! change this to be alpha=0? + ENDIF + + IF ( lhl > 1 .and. qhcnhl(mgs) .gt. 0.0 ) THEN + tmp = qx(mgs,lhl)/cx(mgs,lhl) + zhcnhl(mgs) = g1x(mgs,lhl)*(6.*rho0(mgs)/(pi*xdn(mgs,lhl)))**2*( 2.*( tmp ) * qhcnhl(mgs) - tmp**2 * chcnhl(mgs) ) + + ENDIF + + IF ( qhcns(mgs) > 0.0 .and. chcns(mgs) > 0.0 .and. cx(mgs,ls) > cxmin .and. vhcns(mgs) > 0 ) THEN + tmp = qx(mgs,ls)/cx(mgs,ls) + r = rho0(mgs)*qhcns(mgs)/vhcns(mgs) ! density of new graupel particles + IF ( imusnow == 3 ) THEN + zhcns(mgs) = 3.6476*rho0(mgs)**2*(alpha(mgs,ls)+2.)/(r**2*(alpha(mgs,ls)+1.)) * & + & ( 2.*tmp * qhcns(mgs) - tmp**2 * chcns(mgs) ) + ELSE + write(0,*) 'Value of imusnow not valid. Must be 3 (fix me for =1). imusnow = ',imusnow + STOP + ENDIF + ENDIF + + IF ( qhcni(mgs) > 0.0 .and. chcni(mgs) > 0.0 .and. cx(mgs,li) > cxmin .and. vhcni(mgs) > 0 ) THEN + tmp = qx(mgs,li)/cx(mgs,li) + r = rho0(mgs)*qhcni(mgs)/vhcni(mgs) ! density of new graupel particles + zhcni(mgs) = 3.6476*rho0(mgs)**2*(alpha(mgs,li)+2.)/(r**2*(alpha(mgs,li)+1.)) * & + & ( 2.*tmp * qhcni(mgs) - tmp**2 * chcni(mgs) ) + ENDIF + + + pzhwi(mgs) = & + & +ifrzg*ffrzh*(zrfrzf(mgs) & + & +il5(mgs)*ifiacrg*(ziacrf(mgs) ) ) & +! : + zhcnsh(mgs) + zhcnih(mgs) & + & + zhacw(mgs) & + & + zhacr(mgs) & + & + zhcnhl(mgs) & + & + zhacs(mgs) & + & + zhaci(mgs) & + & + f2h*zhcni(mgs) + f2h*zhcns(mgs) & + & + Max( 0.0, zhdsv(mgs) ) + + pzhwd(mgs) = 0.0 & + & + (1-il5(mgs))*zhmlr(mgs) & + & + zhshr(mgs) & + & + Min( 0.0, zhdsv(mgs) ) & + & - il5(mgs)*zhlcnh(mgs) + + + IF ( igs(mgs) == 44 .and. kgs(mgs) == 23 .or. dtp*( pqhwi(mgs) + pqhwd(mgs) ) > qxmin(lh) ) THEN +! write(0,*) 'i,k,time = ',igs(mgs),kgs(mgs),time_real +! write(0,*) 'pzhwi,d = ',pzhwi(mgs),pzhwd(mgs),dtp*( pzhwi(mgs) + pzhwd(mgs) ),zx(mgs,lh) +! write(0,*) 'pqhwi,d = ',pqhwi(mgs),pqhwd(mgs),dtp*( pqhwi(mgs) + pqhwd(mgs) ),qx(mgs,lh) +! write(0,*) 'pchwi,d = ',pchwi(mgs),pchwd(mgs),dtp*( pchwi(mgs) + pchwd(mgs) ),cx(mgs,lh) + ENDIF + + +! IF ( zhcnhl(mgs) < 0.0 ) THEN +! write(0,*) 'Problem with zhcnhl! zhcnhl,qhcnhl,chcnhl = ',zhcnhl(mgs),qhcnhl(mgs),chcnhl(mgs) +! write(0,*) 'g1,tmp = ',g1x(mgs,lhl),tmp +! write(0,*) ( 2.*( tmp ) * qhcnhl(mgs) - tmp**2 * chcnhl(mgs) ) +! +!! STOP +! ENDIF + end do + + if (ndebug .gt. 0 .and. my_rank>=0 ) write(0,*) my_rank, 'end graupel reflectivity' + + ENDIF + +! +! Hail reflectivity +! + + do mgs = 1,ngscnt + + zhldsv(mgs) = 0.0 + zhlacr(mgs) = 0.0 + zhlacw(mgs) = 0.0 + + ENDDO + + IF ( lzhl .gt. 1 .or. ( lzr > 1 .and. lnhl > 1 ) ) THEN ! also run for 2-moment hail for 3-moment rain sources + + if (ndebug .gt. 0 .and. my_rank>=0 ) write(0,*) my_rank, 'hail reflectivity' + + do mgs = 1,ngscnt + + IF ( qx(mgs,lhl) .gt. qxmin(lhl) .and. cx(mgs,lhl) .gt. 0.0 ) THEN + tmp = qx(mgs,lhl)/cx(mgs,lhl) + alp = Max( alphamin, alpha(mgs,lhl) ) +! g1 = (6.0 + alp)*(5.0 + alp)*(4.0 + alp)/((3.0 + alp)*(2.0 + alp)*(1.0 + alp)) + g1 = g1x(mgs,lhl) ! (6.0 + alp)*(5.0 + alp)*(4.0 + alp)/((3.0 + alp)*(2.0 + alp)*(1.0 + alp)) + + IF ( .not. mixedphase .and. qhlmlr(mgs) /= 0.0 .and. chlmlr(mgs) /= 0.0 .and. ibinhlmlr < 1 ) THEN + zhlmlr(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lhl)))**2*( 2.*tmp * qhlmlr(mgs) - tmp**2 * chlmlr(mgs) ) + ENDIF + + zhlshr(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lhl)))**2*( 2.*tmp * qhlshr(mgs) - tmp**2 * chlshr(mgs) ) + IF ( lzr > 1 .and. qhlshr(mgs) /= 0.0 .and. chlshrr(mgs) /= 0.0 ) THEN + IF ( temg(mgs) >= tfr ) THEN + ! zhlshrr(mgs) = g1*(6.*rho0(mgs)/(pi*xdn0(lr)))**2*( 2.*tmp * qhlshr(mgs) - tmp**2 * chlshrr(mgs) ) + ! IF ( zhlshrr(mgs) > 0.0 ) THEN + ! zhlshrr(mgs) = g1*(6.*rho0(mgs)/(pi*xdn0(lr)))**2*( 2.*tmp * qhlshr(mgs) - tmp**2 * chlshr(mgs) ) + ! ENDIF + IF ( (shedalp + alpha(mgs,lhl))*xdia(mgs,lhl,1) < sheddiam ) THEN ! if not shedding small drops, then use alpha of hail + z1 = g1*(6.0*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( qhlshr(mgs)**2/ chlshrr(mgs) ) + ELSE + z1 = g1shr*(6.0*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( qhlshr(mgs)**2/ chlshrr(mgs) ) ! should this be g1shr? + ENDIF + zhlshrr(mgs) = z1 +! z1 = g1mlr*(rho0(mgs)/(xdn(mgs,lr)))**2*( qhlshr(mgs)**2/ chlshrr(mgs) ) ! should this be g1shr? +! zhlshrr(mgs) = Max( z1, zhlshrr(mgs)) + ELSE + zhlshrr(mgs) = g1shr*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( qhlshr(mgs)**2/ chlshrr(mgs) ) + ENDIF + + zhlshrr(mgs) = Min( 0.0, zhlshrr(mgs) ) + ENDIF + + IF ( zhlshr(mgs) > 0.0 ) THEN + write(0,*) 'Problem with zhlshr! zhlshr,qhlshr,chlshr = ',zhlshr(mgs),qhlshr(mgs),chlshr(mgs) + write(0,*) 'g1,tmp, qx,cx,zx = ',g1,tmp,qx(mgs,lhl),cx(mgs,lhl),zx(mgs,lhl) + write(0,*) ( 2.*tmp * qhlshr(mgs) - tmp**2 * chlshr(mgs) ), 2.*tmp * qhlshr(mgs), - tmp**2 * chlshr(mgs) + write(0,*) 'temcg = ',temcg(mgs),'chlshr recalc = ',(cx(mgs,lhl)/(qx(mgs,lhl)+1.e-20))*qhlshr(mgs) + + STOP + ENDIF +! zhlshr(mgs) = Min( 0.0, zhlshr(mgs) ) + +! zhlshr(mgs) = (xdn0(lr)/(xdn(mgs,lhl)))**2*( zx(mgs,lhl) * qhlshr(mgs) ) + + qtmp = qhldpv(mgs) + qhlcev(mgs) + ctmp = chldpv(mgs) + chlcev(mgs) + + zhldsv(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lhl)))**2*( 2.*( tmp ) * qtmp - tmp**2 * ctmp ) + + alp = Max( alphahacx, alpha(mgs,lhl) ) +! g1 = (6.0 + alp)*(5.0 + alp)*(4.0 + alp)/((3.0 + alp)*(2.0 + alp)*(1.0 + alp)) + g1 = g1x(mgs,lhl) ! (6.0 + alp)*(5.0 + alp)*(4.0 + alp)/((3.0 + alp)*(2.0 + alp)*(1.0 + alp)) + + IF ( .true. ) THEN ! { + IF ( qhlacr(mgs) .gt. 0.0 ) THEN +! z = g1*(6.*rho0(mgs)/(pi*1000.))**2*( (qx(mgs,lhl)+dtp*qhlacr(mgs))**2)/(cx(mgs,lhl)) + zhlacr(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lhl)))**2*( 2.*( tmp ) * qhlacr(mgs) ) +! zhlacr(mgs) = Min( zxmxd(mgs,lr), zhlacr(mgs) ) + +! IF ( z > zx(mgs,lhl) ) THEN +! zhlacr(mgs) = (z - zx(mgs,lhl))*dtpinv +! ELSE +! zhlacr(mgs) = 0.0 +! ENDIF + ENDIF + +! zhacr(mgs) = g1*(6.*rho0(mgs)/(pi*1000.))**2*( 2.*( tmp ) * qhacr(mgs) ) +! zhacr(mgs) = g1*(6.*rho0(mgs)/(pi*1000.))**2*( 2.*( tmp ) * qhacr(mgs) - tmp**2 * chacr(mgs) ) + + IF ( qhlacw(mgs) .gt. 0.0 ) THEN + alp = Max( 3.0, alpha(mgs,lhl)+1. ) + g1 = (6.0 + alp)*(5.0 + alp)*(4.0 + alp)/((3.0 + alp)*(2.0 + alp)*(1.0 + alp)) + +! z = g1*(6.*rho0(mgs)/(pi*1000.))**2*( (qx(mgs,lhl)+dtp*(qhlacw(mgs)-qhlmul1(mgs)))**2)/(cx(mgs,lhl)) +! zhlacw(mgs) = g1*(6.*rho0(mgs)/(pi*1000.))**2*( 2.*( qx(mgs,lhl)/cx(mgs,lhl)) * qhlacw(mgs) ) + zhlacw(mgs) = g1*(6.*rho0(mgs)/(pi*xdn(mgs,lhl)))**2*( 2.*tmp * qhlacw(mgs) ) + +! IF ( z > zx(mgs,lhl) ) THEN +! zhlacw(mgs) = (z - zx(mgs,lhl))*dtpinv +! ENDIF + g1 = g1x(mgs,lhl) ! (6.0 + alp)*(5.0 + alp)*(4.0 + alp)/((3.0 + alp)*(2.0 + alp)*(1.0 + alp)) + ENDIF + + ELSE ! } .false. { + + IF ( qhlacw(mgs) .gt. 0.0 .or. qhlacr(mgs) .gt. 0.0 ) THEN + z = g1*(6.*rho0(mgs)/(pi*1000.))**2*( (qx(mgs,lhl)+dtp*(qhlacr(mgs) + qhlacw(mgs)-qhlmul1(mgs)))**2)/(cx(mgs,lhl)) +! zhlacw(mgs) = g1*(6.*rho0(mgs)/(pi*1000.))**2*( 2.*( qx(mgs,lhl)/cx(mgs,lhl)) * qhlacw(mgs) ) + IF ( z > zx(mgs,lhl) ) THEN + zhlacw(mgs) = (z - zx(mgs,lhl))*dtpinv + ENDIF + ENDIF + + ENDIF ! } + + ENDIF +! qsplinter(mgs) + + IF ( lzhl > 1 ) THEN + pzhli(mgs) = ffrzh*(((1.0-ifrzg)*zrfrzf(mgs) & + & +il5(mgs)*(1.0-ifiacrg)*ziacrf(mgs) )) & + & + il5(mgs)*zhlcnh(mgs) & + & + zhlacw(mgs) & + & + zhlacr(mgs) & +! : + zhlacs(mgs) & + & + Max( 0.0, zhldsv(mgs) ) + + pzhld(mgs) = 0.0 & + & + (1-il5(mgs))*zhlmlr(mgs) & + & + zhlshr(mgs) & + & - zhcnhl(mgs) & + & + Min( 0.0, zhldsv(mgs) ) + + + IF ( .not. ( -1.0 < pzhli(mgs) .and. pzhli(mgs) < 1.e20 ) ) THEN + write(iunit,*) 'Problem with pzhli!' + write(iunit,*) 'zhlcnh,zhlacw,zhlacr,zhldsv = ',zhlcnh(mgs),zhlacw(mgs),zhlacr(mgs),zhldsv(mgs) + ENDIF + + IF ( .not. ( -1.0e20 < pzhld(mgs) .and. pzhld(mgs) < 1. ) ) THEN + write(iunit,*) 'Problem with pzhld!' + write(iunit,*) 'zhlmlr,zhlshr,zhldsv = ',zhlmlr(mgs),zhlshr(mgs),zhldsv(mgs) + ENDIF + + ENDIF ! lzhl > 1 + + end do + + ENDIF + +! +! rain reflectivity +! + if (ndebug .gt. 0 ) write(0,*) 'WARMZIEG: dbg = 11' + + IF ( lzr .gt. 1 ) THEN ! + + DO mgs = 1,ngscnt + + zracw(mgs) = 0.0 + zracr(mgs) = 0.0 + zrcev(mgs) = 0.0 + zrach(mgs) = 0.0 + zrachl(mgs) = 0.0 + zsshr(mgs) = 0.0 + zsshrr(mgs) = 0.0 +! zsmlr(mgs) = 0.0 + zsmlrr(mgs) = 0.0 + + IF ( qx(mgs,ls) .gt. qxmin(ls) .and. ( csmlr(mgs) /= 0.0 .or. csshr(mgs) /= 0.0 .or. & + csmlrr(mgs) /= 0.0 .or. csshrr(mgs) /= 0.0) ) THEN !{ + tmp = qx(mgs,ls)/cx(mgs,ls) + g1 = 36.*(xnu(ls)+2.0)/((xnu(ls)+1.0)*pi**2) + IF ( .not. mixedphase ) THEN +! zsmlr(mgs) = (xdn(mgs,ls)/xdn(mgs,lr))**2*g1*(rho0(mgs)/(xdn(mgs,ls)))**2* & +! & ( 2.*tmp * qsmlr(mgs) - tmp**2 * csmlr(mgs) ) + + IF ( csmlrr(mgs) /= 0.0 ) THEN + z1 = g1smlr*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( qsmlr(mgs)**2/ csmlrr(mgs) ) + zsmlrr(mgs) = z1 + ENDIF + ENDIF + +! zsshr(mgs) = (xdn(mgs,ls)/xdn(mgs,lr))**2*g1*(rho0(mgs)/(xdn(mgs,ls)))**2* & +! & ( 2.*tmp * qsshr(mgs) - tmp**2 * csshr(mgs) ) + + IF ( csshrr(mgs) /= 0.0 ) THEN + z1 = g1smlr*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( qsshr(mgs)**2/ csshrr(mgs) ) + zsshrr(mgs) = z1 + ENDIF + + ENDIF !} + + IF ( .not. mixedphase ) THEN !{ + IF ( zhmlr(mgs) < 0.0 .and. chmlrr(mgs) /= 0.0 .and. ibinhmlr == 0 ) THEN !{ + tmp = qx(mgs,lh)/cx(mgs,lh) +! zhmlrr(mgs) = Min(0.0, (xdn(mgs,lh)/xdn(mgs,lr))**2 * & +! & g1x(mgs,lh)*(6.*rho0(mgs)/(pi*xdn(mgs,lh)))**2*( 2.*tmp * qhmlr(mgs) - tmp**2 * chmlrr(mgs) ) ) + +! IF ( zhmlrr(mgs) >= 0. ) THEN +! zhmlrr(mgs) = (xdn(mgs,lh)/xdn(mgs,lr))**2 * zhmlr(mgs) +! ENDIF + IF ( (shedalp + alpha(mgs,lh))*xdia(mgs,lh,1) < sheddiam ) THEN ! if not shedding small drops, then use alpha of graupel + z1 = g1x(mgs,lh)*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( qhmlr(mgs)**2/ chmlrr(mgs) ) + ELSE ! assume drops are shed off, so use either alpha for shedding or graupel alpha, whichever gives the lower g-factor (i.e., larger alpha) + z1 = Min(g1x(mgs,lh),g1shr)*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( qhmlr(mgs)**2/ chmlrr(mgs) ) + ENDIF + zhmlrr(mgs) = z1 +! z1 = g1mlr*(rho0(mgs)/(xdn(mgs,lr)))**2*( qhmlr(mgs)**2/ chmlrr(mgs) ) +! zhmlrr(mgs) = Max( z1, zhmlrr(mgs)) + ENDIF !} + + +! zhshrr(mgs) = (xdn(mgs,lh)/xdn(mgs,lr))**2 * zhshr(mgs) + + IF ( lhl > 1 .and. qhlmlr(mgs) /= 0 .and. ibinhlmlr == 0) THEN + tmp = qx(mgs,lhl)/cx(mgs,lhl) +! zhlmlrr(mgs) = Min(0.0, (xdn(mgs,lhl)/xdn(mgs,lr))**2 * & +! & g1x(mgs,lhl)*(6.*rho0(mgs)/(pi*xdn(mgs,lhl)))**2*( 2.*tmp * qhlmlr(mgs) - tmp**2 * chlmlrr(mgs) ) ) + +! IF ( zhlmlrr(mgs) >= 0. ) THEN ! should be negative, if not, then use alternate calculation +! zhlmlrr(mgs) = (xdn(mgs,lhl)/xdn(mgs,lr))**2 * zhlmlr(mgs) +! ENDIF + + IF ( (shedalp + alpha(mgs,lhl))*xdia(mgs,lhl,1) < sheddiam ) THEN ! if not shedding small drops, then use alpha of hail + z1 = g1x(mgs,lhl)*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( qhlmlr(mgs)**2/ chlmlrr(mgs) ) + ELSE ! assume drops are shed off, so use either alpha for shedding or graupel alpha, whichever gives the lower g-factor (i.e., larger alpha) + z1 = Min(g1x(mgs,lhl),g1shr)*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( qhlmlr(mgs)**2/ chlmlrr(mgs) ) +! z1 = g1shr*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( qhlmlr(mgs)**2/ chlmlrr(mgs) ) + ENDIF + zhlmlrr(mgs) = z1 + +! z1 = g1mlr*(rho0(mgs)/(xdn(mgs,lr)))**2*( qhlmlr(mgs)**2/ chlmlrr(mgs) ) +! zhlmlrr(mgs) = Max( z1, zhlmlrr(mgs)) +! zhlmlr(mgs) = +! zhlshrr(mgs) = (xdn(mgs,lhl)/xdn(mgs,lr))**2 * zhlshr(mgs) + ENDIF + + ENDIF ! } + + IF ( qx(mgs,lr) .gt. qxmin(lr) .and. cx(mgs,lr) .gt. 0.0 ) THEN + + tmp = qx(mgs,lr)/cx(mgs,lr) + g1 = g1x(mgs,lr) ! 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + + + IF ( qracw(mgs) > 0.0 .and. cx(mgs,lr) > 0.0 ) THEN + zracw(mgs) = g1x(mgs,lr)*(6.*rho0(mgs)/(pi*1000.))**2*( 2.*tmp * qracw(mgs) ) + ENDIF + + IF ( cracr(mgs) > 0.0 .and. cx(mgs,lr) > 0.0 ) THEN + zracr(mgs) = g1x(mgs,lr)*(6.*rho0(mgs)/(pi*1000.))**2*( tmp**2 * cracr(mgs) ) + ENDIF + + qtmp = qrcev(mgs) + ctmp = crcev(mgs) + +! IF ( .false. .or. iferwisventr == 2 ) THEN +! zrcev(mgs) = Min(0.0, (12./(pii*xdn(mgs,lr)))*xdia(mgs,lr,1)**3*fvce(mgs)*rwcap(mgs)*rwventz(mgs) ) +! ELSE + zrcev(mgs) = g1x(mgs,lr)*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2*( 2.*( tmp ) * qtmp - tmp**2 * ctmp ) + + + IF ( iferwisventr == 2 ) THEN + vent1 = Min(0.0, (12./(pii*xdn(mgs,lr)))*xdia(mgs,lr,1)**3*fvce(mgs)*rwcap(mgs)*rwventz(mgs)) + zrcev(mgs) = Max( zrcev(mgs), vent1 ) + ENDIF +! IF ( ny == 2 .and. igs(mgs) == 20 ) THEN +! write(0,*) 'k,zrcevold,new,maxdep : ',kgs(mgs),zrcev(mgs),vent1,-zxmxd(mgs,lr),alpha(mgs,lr),cx(mgs,lr) +! ENDIF + + +! ENDIF + zrcev(mgs) = Max( zrcev(mgs), -zxmxd(mgs,lr) ) + + IF ( qhacr(mgs) > 0.0 ) THEN + zrach(mgs) = g1x(mgs,lr)*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2* & + & ( 2.*( qx(mgs,lr)/cx(mgs,lr)) * qhacr(mgs) - tmp**2 * chacr(mgs) ) + zrach(mgs) = Min( zrach(mgs), zxmxd(mgs,lr) ) + + ENDIF + + IF ( lhl > 1 .and. qhlacr(mgs) > 0.0 ) THEN + zrachl(mgs) = g1x(mgs,lr)*(6.*rho0(mgs)/(pi*xdn(mgs,lr)))**2* & + & ( 2.*( qx(mgs,lr)/cx(mgs,lr)) * qhlacr(mgs) - tmp**2 * chlacr(mgs) ) + zrachl(mgs) = Min( zrachl(mgs), zxmxd(mgs,lr) ) + ENDIF - do mgs = 1,ngscnt - pqhli(mgs) = & - & +il5(mgs)*(qhldpv(mgs) ) & ! + (1.0-ifrzg)*(qiacrf(mgs)+qrfrzf(mgs) + qracif(mgs))) & - & +il5(mgs)*(1.0-ifrzg)*(qrfrzf(mgs) ) & - & +qhlacr(mgs)+qhlacw(mgs) & -! & +qhlacs(mgs)+qhlaci(mgs) & - & + qhlcnh(mgs) - pqhld(mgs) = & - & qhlshr(mgs) & - & +(1-il5(mgs))*qhlmlr(mgs) & -! > +il5(mgs)*qhlsbv(mgs) & - & + qhlsbv(mgs) & - & -qhlmul1(mgs) - qhcnhl(mgs) - end do + + ENDIF - ENDIF ! lhl + pzrwi(mgs) = zrcnw(mgs) + zracw(mgs) + zracr(mgs) & + & + Max( 0.,zrcev(mgs) ) & + & - (1-il5(mgs))*zsmlrr(mgs) & + & - zsshrr(mgs) & + & - (1-il5(mgs))*zhmlrr(mgs) & + & - zhshrr(mgs) & + & - (1-il5(mgs))*zhlmlrr(mgs) & + & - zhlshrr(mgs) - ENDIF ! warmonly -! -! Liquid water on snow and graupel -! + pzrwd(mgs) = 0.0 & + & + Min(0.,zrcev(mgs) ) & + & - zrach(mgs) & + & - zrachl(mgs) & + & - zrfrz(mgs) & + & - il5(mgs)*(ziacr(mgs) ) - vhmlr(:) = 0.0 - vhlmlr(:) = 0.0 - vhfzh(:) = 0.0 - vhlfzhl(:) = 0.0 - IF ( mixedphase ) THEN - ELSE ! set arrays for non-mixedphase graupel - -! vhshdr(:) = 0.0 - vhmlr(:) = qhmlr(:) ! not actually volume, but treated as q in rate equation -! vhsoak(:) = 0.0 + IF ( zx(mgs,lr) + dtp*(pzrwi(mgs)+pzrwd(mgs)) <= 0.0 & + .and. qx(mgs,lr) > qxmin(lr) ) THEN + pzrwd(mgs) = -zx(mgs,lr)*dtpinv - pzrwi(mgs) + ENDIF -! vhlshdr(:) = 0.0 - vhlmlr(:) = qhlmlr(:) ! not actually volume, but treated as q in rate equation -! vhlmlr(:) = rho0(:)*qhlmlr(:)/xdn(:,lhl) -! vhlsoak(:) = 0.0 + ENDDO - ENDIF ! mixedphase + ENDIF @@ -18390,6 +22528,33 @@ subroutine nssl_2mom_gs & ! > + rho0(mgs)*qhshr(mgs)/xdn(mgs,lh) !xdn(mgs,lr) ! ENDIF + IF ( lzh > 1 .and. qx(mgs,lh) > qxmin(lh) ) THEN +! Calculate change in reflectivity due to density changes + + xdn_new = rho0(mgs)*(qx(mgs,lh) + dtp*(pqhwi(mgs) + pqhwd(mgs) ))/ & + & (vx(mgs,lh) + dtp*(pvhwi(mgs) + pvhwd(mgs)) ) + + IF ( mixedphase ) THEN + IF ( qxw(mgs,lh) .gt. 0.0 ) THEN + dnmx = xdnmx(lr) + ELSE + dnmx = xdnmx(lh) + ENDIF + ELSE + dnmx = xdnmx(lh) + ENDIF + + xdn_new = Max( Min( xdn_new, dnmx ), xdnmn(lh) ) + + drhodt = (xdn_new - xdn(mgs,lh))*dtpinv + + zhwdn(mgs) = -2.*g1x(mgs,lh)*(rho0(mgs)*qx(mgs,lh)*6.*pii )**2/(cx(mgs,lh)*xdn(mgs,lh)**3)*drhodt + + pzhwi(mgs) = pzhwi(mgs) + Max(0.0, zhwdn(mgs)) + pzhwd(mgs) = pzhwd(mgs) + Min(0.0, zhwdn(mgs)) + + + ENDIF IF ( .false. .and. ny .eq. 2 .and. kgs(mgs) .eq. 9 .and. igs(mgs) .eq. 19 ) THEN write(iunit,*) @@ -18472,6 +22637,32 @@ subroutine nssl_2mom_gs & & + rho0(mgs)*(1-il5(mgs))*vhlmlr(mgs)/xdn(mgs,lhl) & & + vhlshdr(mgs) - vhlsoak(mgs) + IF ( lzhl > 1 .and. qx(mgs,lhl) > qxmin(lhl) ) THEN +! Calculate change in reflectivity due to density changes + + xdn_new = rho0(mgs)*(qx(mgs,lhl) + dtp*(pqhli(mgs) + pqhld(mgs) ))/ & + & (vx(mgs,lhl) + dtp*(pvhli(mgs) + pvhld(mgs)) ) + + IF ( mixedphase ) THEN + IF ( qxw(mgs,lhl) .gt. 0.0 ) THEN + dnmx = xdnmx(lr) + ELSE + dnmx = xdnmx(lhl) + ENDIF + ELSE + dnmx = xdnmx(lhl) + ENDIF + xdn_new = Max( Min( xdn_new, dnmx ), xdnmn(lhl) ) + + drhodt = (xdn_new - xdn(mgs,lhl))*dtpinv + + zhldn(mgs) = -2.*g1x(mgs,lhl)*(rho0(mgs)*qx(mgs,lhl)*6.*pii )**2/(cx(mgs,lhl)*xdn(mgs,lhl)**3)*drhodt + + pzhli(mgs) = pzhli(mgs) + Max(0.0, zhldn(mgs)) + pzhld(mgs) = pzhld(mgs) + Min(0.0, zhldn(mgs)) + + + ENDIF ENDDO @@ -18701,7 +22892,7 @@ subroutine nssl_2mom_gs & write(iunit,*) -qracs(mgs)*(1-il2(mgs)) , qhacs(mgs) , qhlacs(mgs) write(iunit,*) -qhcns(mgs) write(iunit,*) +(1-il5(mgs))*qsmlr(mgs) , qsshr(mgs) - write(iunit,*) (qssbv(mgs)) + write(iunit,*) qssbv(mgs) write(iunit,*) Min(0.0, qscev(mgs)) write(iunit,*) -qsmul(mgs) ! @@ -18773,33 +22964,37 @@ subroutine nssl_2mom_gs & IF ( warmonly < 0.5 ) THEN pfrz(mgs) = & & (1-il5(mgs))* & - & (qhmlr(mgs)+qsmlr(mgs)+qhlmlr(mgs)) & !+qhmlh(mgs)) & - & +il5(mgs)*(qhfzh(mgs)+qsfzs(mgs)+qhlfzhl(mgs)) & + & (qhmlr(mgs)+ & + & qsmlr(mgs)+qhlmlr(mgs)) & !+qhmlh(mgs)) & & +il5(mgs)*(1-imixedphase)*( & & qsacw(mgs)+qhacw(mgs) + qhlacw(mgs) & & +qsacr(mgs)+qhacr(mgs) + qhlacr(mgs) & & +qsshr(mgs) & & +qhshr(mgs) & - & +qhlshr(mgs) +qrfrz(mgs)+qiacr(mgs) & + & +qhlshr(mgs) & + & +qrfrz(mgs)+qiacr(mgs) & & ) & & +il5(mgs)*(qwfrz(mgs) & & +qwctfz(mgs)+qiihr(mgs) & & +qiacw(mgs)) pmlt(mgs) = & & (1-il5(mgs))* & - & (qhmlr(mgs)+qsmlr(mgs)+qhlmlr(mgs)) !+qhmlh(mgs)) + & (qhmlr(mgs)+qsmlr(mgs)+ & + & qhlmlr(mgs)) !+qhmlh(mgs)) ! NOTE: psub is sum of sublimation and deposition psub(mgs) = & & il5(mgs)*( & & + qsdpv(mgs) + qhdpv(mgs) & & + qhldpv(mgs) & & + qidpv(mgs) + qisbv(mgs) ) & - & + qssbv(mgs) + qhsbv(mgs) + qhlsbv(mgs) & + & + qssbv(mgs) + qhsbv(mgs) & + & + qhlsbv(mgs) & & +il5(mgs)*(qiint(mgs)) pvap(mgs) = & - & qrcev(mgs) + qhcev(mgs) + qscev(mgs) + qhlcev(mgs) + & qrcev(mgs) + qhcev(mgs) + qscev(mgs) + qhlcev(mgs) + qfcev(mgs) pevap(mgs) = & - & Min(0.0,qrcev(mgs)) + Min(0.0,qhcev(mgs)) + Min(0.0,qscev(mgs)) + Min(0.0,qhlcev(mgs)) + & Min(0.0,qrcev(mgs)) + Min(0.0,qhcev(mgs)) + Min(0.0,qscev(mgs)) + Min(0.0,qhlcev(mgs)) & + + Min(0.0,qfcev(mgs)) ! NOTE: pdep is the deposition part only pdep(mgs) = & & il5(mgs)*( & @@ -18827,7 +23022,7 @@ subroutine nssl_2mom_gs & & + qidpv(mgs) + qisbv(mgs) ) & & +il5(mgs)*(qiint(mgs)) pvap(mgs) = & - & qrcev(mgs) + qhcev(mgs) + qhlcev(mgs) ! + qscev(mgs) + & qrcev(mgs) + qhcev(mgs) + qhlcev(mgs) + qfcev(mgs) ELSE pfrz(mgs) = 0.0 psub(mgs) = 0.0 @@ -18855,6 +23050,8 @@ subroutine nssl_2mom_gs & ! ! do mgs = 1,ngscnt + + qwvp(mgs) = qwvp(mgs) + & & dtp*(pqwvi(mgs)+pqwvd(mgs)) qx(mgs,lc) = qx(mgs,lc) + & @@ -18867,6 +23064,7 @@ subroutine nssl_2mom_gs & & dtp*(pqswi(mgs)+pqswd(mgs)) qx(mgs,lh) = qx(mgs,lh) + & & dtp*(pqhwi(mgs)+pqhwd(mgs)) + IF ( lhl .gt. 1 ) THEN qx(mgs,lhl) = qx(mgs,lhl) + & & dtp*(pqhli(mgs)+pqhld(mgs)) @@ -18936,12 +23134,32 @@ subroutine nssl_2mom_gs & + ENDIF + ENDIF + IF ( ipconc .ge. 6 ) THEN + IF ( lzr .gt. 1 ) THEN + zx(mgs,lr) = zx(mgs,lr) + & + & dtp*(pzrwi(mgs)+pzrwd(mgs)) + ENDIF + IF ( lzs .gt. 1 ) THEN + zx(mgs,ls) = zx(mgs,ls) + & + & dtp*(pzswi(mgs)+pzswd(mgs)) + ENDIF + IF ( lzh .gt. 1 ) THEN + zx(mgs,lh) = zx(mgs,lh) + & + & dtp*(pzhwi(mgs)+pzhwd(mgs)) + ENDIF + IF ( lzhl .gt. 1 ) THEN + zx(mgs,lhl) = zx(mgs,lhl) + & + & dtp*(pzhli(mgs)+pzhld(mgs)) +! IF ( pchli(mgs) .ne. 0. .or. pchld(mgs) .ne. 0 ) THEN +! write(0,*) 'dr: cx,pchli,pchld = ', cx(mgs,lhl),pchli(mgs),pchld(mgs), igs(mgs),kgs(mgs) +! ENDIF ENDIF ENDIF end do end if - IF ( has_wetscav ) THEN DO mgs = 1,ngscnt evapprod2d(igs(mgs),kgs(mgs)) = -(qrcev(mgs) + qssbv(mgs) + qhsbv(mgs) + qhlsbv(mgs)) @@ -19183,41 +23401,9 @@ subroutine nssl_2mom_gs & tqvcon = temg(mgs)-cbw ltemq = (temg(mgs)-163.15)/fqsat+1.5 ltemq = Min( nqsat, Max(1,ltemq) ) -! IF ( ltemq .lt. 1 .or. ltemq .gt. nqsat ) THEN -! C$PAR CRITICAL SECTION -! write(iunit,*) 'out of range ltemq!',temgtmp,temg(mgs), -! : thetap(mgs),theta0(mgs),pres(mgs),theta(mgs), -! : ltemq,igs(mgs),jy,kgs(mgs) -! write(iunit,*) an(igs(mgs),jy,kgs(mgs),lt), -! : ab(igs(mgs),jy,kgs(mgs),lt), -! : t0(igs(mgs),jy,kgs(mgs)) -! write(iunit,*) fcc3(mgs),qx(mgs,lc),qitmp(mgs),dtp,ptem(mgs) -! STOP -! C$PAR END CRITICAL SECTION -! END IF + qvs(mgs) = pqs(mgs)*tabqvs(ltemq) qis(mgs) = pqs(mgs)*tabqis(ltemq) -! qss(kz) = qvs(kz) -! if ( temg(kz) .lt. tfr ) then -! if( qcw(kz) .le. qxmin(lc) .and. qci(kz) .gt. qxmin(li)) -! > qss(kz) = qis(kz) -! if( qcw(kz) .gt. qxmin(lc) .and. qci(kz) .gt. qxmin(li)) -! > qss(kz) = (qcw(kz)*qvs(kz) + qci(kz)*qis(kz)) / -! > (qcw(kz) + qci(kz)) -! qss(kz) = qis(kz) -! end if -! dont get enough condensation with qcw .le./.gt. qxmin(lc) -! if ( temg(mgs) .lt. tfr ) then -! if( qx(mgs,lc) .ge. 0.0 .and. qitmp(mgs) .le. qxmin(li) ) -! > qss(mgs) = qvs(mgs) -! if( qx(mgs,lc) .eq. 0.0 .and. qitmp(mgs) .gt. qxmin(li)) -! > qss(mgs) = qis(mgs) -! if( qx(mgs,lc) .gt. 0.0 .and. qitmp(mgs) .gt. qxmin(li)) -! > qss(mgs) = (qx(mgs,lc)*qvs(mgs) + qitmp(mgs)*qis(mgs)) / -! > (qx(mgs,lc) + qitmp(mgs)) -! else -! qss(mgs) = qvs(mgs) -! end if qss(mgs) = qvs(mgs) if ( temg(mgs) .lt. tfr ) then if( qx(mgs,lc) .ge. 0.0 .and. qitmp(mgs) .le. qxmin(li) ) & @@ -19456,7 +23642,6 @@ subroutine nssl_2mom_gs & - if (ndebug .gt. 0 ) write(0,*) 'gs 11' do mgs = 1,ngscnt @@ -19487,6 +23672,29 @@ subroutine nssl_2mom_gs & ENDIF + + + +! +! 6th moments +! + + IF ( ipconc .ge. 6 ) THEN + DO il = lr,lhab + IF ( lz(il) .gt. 1 ) THEN + IF ( lf > 1 .and. il == lf ) THEN + lfsave(mgs,3) = an(igs(mgs),jy,kgs(mgs),lz(il)) + lfsave(mgs,4) = zx(mgs,il) + ENDIF + + an(igs(mgs),jy,kgs(mgs),lz(il)) = zx(mgs,il) + & + & min( an(igs(mgs),jy,kgs(mgs),lz(il)), 0.0 ) + zx(mgs,il) = an(igs(mgs),jy,kgs(mgs),lz(il)) + + ENDIF + ENDDO + + ENDIF ! end do ! @@ -19551,11 +23759,466 @@ subroutine nssl_2mom_gs & ENDIF !} ENDDO ! mgs + ELSE ! } { is three-moment, so have to adjust Z if size is too large + IF ( il == lr .and. imurain == 3 ) THEN ! { { RAIN + +! rdmx = +! rdmn = + + DO mgs = 1,ngscnt + + + IF ( iresetmoments == 1 .or. iresetmoments == il ) THEN + IF ( zx(mgs,lr) <= zxmin ) THEN + qx(mgs,lv) = qx(mgs,lv) + qx(mgs,il) + qx(mgs,lr) = 0.0 + cx(mgs,lr) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),lr) + an(igs(mgs),jgs,kgs(mgs),lr) = qx(mgs,lr) + an(igs(mgs),jgs,kgs(mgs),ln(lr)) = cx(mgs,lr) + ELSEIF ( cx(mgs,lr) <= cxmin ) THEN + qx(mgs,lv) = qx(mgs,lv) + qx(mgs,il) + zx(mgs,lr) = 0.0 + qx(mgs,lr) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),lr) + an(igs(mgs),jgs,kgs(mgs),lr) = qx(mgs,lr) + an(igs(mgs),jgs,kgs(mgs),lz(lr)) = zx(mgs,lr) + ENDIF + ENDIF + + IF ( qx(mgs,lr) .gt. qxmin(lr) ) THEN + + xv(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(xdn(mgs,lr)*Max(1.0e-11,cx(mgs,lr))) + IF ( xv(mgs,lr) .gt. xvmx(lr) ) THEN +! xv(mgs,lr) = xvmx(lr) +! cx(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(xvmx(lr)*xdn(mgs,lr)) + ELSEIF ( xv(mgs,lr) .lt. xvmn(lr) ) THEN + xv(mgs,lr) = xvmn(lr) + cx(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(xvmn(lr)*xdn(mgs,lr)) + ENDIF + + IF ( zx(mgs,il) > 0.0 .and. cx(mgs,il) <= 0.0 ) THEN +! have mass and reflectivity but no concentration, so set concentration, using default alpha + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + z = zx(mgs,il) + qr = qx(mgs,il) + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/(z*xdn(mgs,lr)**2) +! an(igs(mgs),jgs,kgs(mgs),ln(il)) = zx(mgs,il) + ELSEIF ( zx(mgs,il) <= zxmin .and. cx(mgs,il) > 0.0 ) THEN +! have mass and concentration but no reflectivity, so set reflectivity, using default alpha + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + chw = cx(mgs,il) + qr = qx(mgs,il) + zx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/(xdn(mgs,lr)**2*chw) + an(igs(mgs),jgs,kgs(mgs),lz(lr)) = zx(mgs,lr) + + ELSEIF ( zx(mgs,il) <= zxmin .and. cx(mgs,il) <= 0.0 ) THEN +! How did this happen? + ! set values according to dBZ of -10, or Z = 0.1 +! 0.1 = 1.e18*0.224*an(ix,jy,kz,lzh)*(hwdn/rwdn)**2 + zx(mgs,il) = 1.e-19/0.224*(xdn0(lr)/xdn0(il))**2 + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + z = zx(mgs,il) + qr = qx(mgs,il) + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/(z*1000.*1000) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + ENDIF + + IF ( zx(mgs,lr) > 0.0 ) THEN + xv(mgs,lr) = rho0(mgs)*qx(mgs,lr)/(1000.*cx(mgs,lr)) + vr = xv(mgs,lr) + qr = qx(mgs,lr) + nrx = cx(mgs,lr) + z = zx(mgs,lr) + +! xv = (db(1,kz)*a(1,1,kz,lr))**2/(a(1,1,kz,lnr)) +! rd = z*(pi/6.*1000.)**2/xv + +! determine shape parameter alpha by iteration + IF ( z .gt. 0.0 ) THEN + alp = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/(z*pi**2) - 1. + DO i = 1,20 + IF ( Abs(alp - alpha(mgs,lr)) .lt. 0.01 ) EXIT + alpha(mgs,lr) = Max( rnumin, Min( rnumax, alp ) ) + alp = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/(z*pi**2) - 1. + alp = Max( rnumin, Min( rnumax, alp ) ) + ENDDO + +! check for artificial breakup (rain larger than allowed max size) + IF ( xv(mgs,il) .gt. xvmx(il) .or. (ioldlimiter == 2 .and. xv(mgs,il) .gt. xvmx(il)/8.) ) THEN + tmp = cx(mgs,il) +! write(0,*) 'MY limiter: xv: ',xv(mgs,il), xv(mgs,il)/(xvmx(il)/8.) +! STOP + IF ( ioldlimiter == 2 ) THEN ! MY-style active breakup + x = (6.*rho0(mgs)*qx(mgs,il)/(pi*xdn(mgs,il)*cx(mgs,il)))**(1./3.) + x1 = Max(0.0e-3, x - 3.0e-3) + x2 = Max(0.5, x/6.0e-3) + x3 = x2**3 + cx(mgs,il) = cx(mgs,il)*Max((1.+2.222e3*x1**2), x3) + xv(mgs,il) = xv(mgs,il)/Max((1.+2.222e3*x1**2), x3) + ELSE ! simple cutoff + xv(mgs,il) = Min( xvmx(il), Max( xvmn(il),xv(mgs,il) ) ) + xmas(mgs,il) = xv(mgs,il)*xdn(mgs,il) + cx(mgs,il) = rho0(mgs)*qx(mgs,il)/(xmas(mgs,il)) + ENDIF + !xmas(mgs,il) = xv(mgs,il)*xdn(mgs,il) + !cx(mgs,il) = rho0(mgs)*qx(mgs,il)/(xmas(mgs,il)) + + + IF ( tmp < cx(mgs,il) ) THEN ! breakup + + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + zx(mgs,il) = zx(mgs,il) + g1*(rho0(mgs)/xdn(mgs,il))**2*( (qx(mgs,il)/tmp)**2 * (tmp-cx(mgs,il)) ) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + vr = xv(mgs,lr) + qr = qx(mgs,lr) + nrx = cx(mgs,lr) + z = zx(mgs,lr) + + +! determine shape parameter alpha by iteration + alp = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/(z*pi**2) - 1. + DO i = 1,20 + IF ( Abs(alp - alpha(mgs,lr)) .lt. 0.01 ) EXIT + alpha(mgs,lr) = Max( rnumin, Min( rnumax, alp ) ) + alp = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/(z*pi**2) - 1. + alp = Max( rnumin, Min( rnumax, alp ) ) + ENDDO + + + ENDIF + ENDIF + +! +! Check whether the shape parameter is at or less than the minimum, and if it is, reset the +! concentration or reflectivity to match (prevents reflectivity from being out of balance with Q and N) +! + g1 = 36.*(alpha(mgs,lr)+2.0)/((alpha(mgs,lr)+1.0)*pi**2) + IF ( .true. .and. (alpha(mgs,il) <= rnumin .or. alp == rnumin .or. alp == rnumax) ) THEN + + IF ( rescale_high_alpha .and. alp >= rnumax - 0.01 ) THEN ! reset c at high alpha to prevent growth in Z + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/z*(1./(xdn(mgs,il)))**2 + an(igs(mgs),jy,kgs(mgs),ln(il)) = cx(mgs,il) + + ELSEIF ( rescale_low_alphar .and. alp <= rnumin ) THEN + z = 36.*(alpha(mgs,lr)+2.0)*nrx*vr**2/((alpha(mgs,lr)+1.0)*pi**2) + zx(mgs,il) = z + an(igs(mgs),jy,kgs(mgs),lz(il)) = zx(mgs,il) + ENDIF + ENDIF + + + + ENDIF + ENDIF + + ENDIF + + ENDDO +! CALL cld_cpu('Z-MOMENT-1r') + + + ELSEIF ( il == lh .or. il == lhl .or. il == lf .or. (il == lr .and. imurain == 1 )) THEN ! } { Rain, GRAUPEL OR HAIL + + + + DO mgs = 1,ngscnt + + IF ( lf > 1 .and. il == lf ) THEN + lfsave(mgs,5) = an(igs(mgs),jy,kgs(mgs),ln(il)) + lfsave(mgs,6) = cx(mgs,il) + ENDIF + + IF ( il == lhl .and. lnhlf > 1 ) THEN + IF ( cx(mgs,lhl) > cxmin ) THEN + frac = chxf(mgs,lhl)/cx(mgs,lhl) + ELSE + frac = 0.0 + ENDIF + ENDIF + + IF ( il == lh .and. lnhf > 1 ) THEN + IF ( cx(mgs,lh) > cxmin ) THEN + frach = chxf(mgs,lh)/cx(mgs,lh) + ELSE + frach = 0.0 + ENDIF + ENDIF + + + + IF ( iresetmoments == 1 .or. iresetmoments == il .or. iresetmoments == -1 ) THEN ! { .or. qx(mgs,il) <= qxmin(il) + IF ( zx(mgs,il) <= zxmin ) THEN ! .and. qx(mgs,il) > 0.05e-3 +!! write(91,*) 'zx=0; qx,cx = ',1000.*qx(mgs,il),cx(mgs,il) + qx(mgs,il) = 0.0 + cx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + ELSEIF ( iresetmoments == -1 .and. qx(mgs,il) < qxmin(il) ) THEN + zx(mgs,il) = 0.0 + cx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + + qx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + ELSEIF ( cx(mgs,il) <= cxmin .and. iresetmoments /= -1 ) THEN ! .and. qx(mgs,il) > 0.05e-3 + qx(mgs,lv) = qx(mgs,lv) + qx(mgs,il) + zx(mgs,il) = 0.0 + qx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + ENDIF + ELSE + IF ( zx(mgs,il) < 0.0 ) THEN ! .and. qx(mgs,il) > 0.05e-3 + zx(mgs,il) = 0.0 + ENDIF + ENDIF !} + + + IF ( zx(mgs,il) <= zxmin .and. cx(mgs,il) <= cxmin ) THEN + zx(mgs,il) = 0.0 + cx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),lv) = an(igs(mgs),jgs,kgs(mgs),lv) + an(igs(mgs),jgs,kgs(mgs),il) + qx(mgs,il) = 0.0 + an(igs(mgs),jgs,kgs(mgs),il) = qx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + ENDIF + + IF ( qx(mgs,il) .gt. qxmin(il) ) THEN !{ + + xv(mgs,il) = rho0(mgs)*qx(mgs,il)/(xdn(mgs,il)*Max(1.0e-9,cx(mgs,il))) + xmas(mgs,il) = xv(mgs,il)*xdn(mgs,il) + + IF ( xv(mgs,il) .lt. xvmn(il) ) THEN + xv(mgs,il) = Min( xvmx(il), Max( xvmn(il),xv(mgs,il) ) ) + xmas(mgs,il) = xv(mgs,il)*xdn(mgs,il) + cx(mgs,il) = rho0(mgs)*qx(mgs,il)/(xmas(mgs,il)) + ENDIF + + IF ( zx(mgs,il) > 0.0 .and. cx(mgs,il) <= 0.0 ) THEN !{ +! have mass and reflectivity but no concentration, so set concentration, using default alpha + g1 = (6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))) + z = zx(mgs,il) + qr = qx(mgs,il) +! cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/z + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(6.*qr)**2/(z*(pi*xdn(mgs,il))**2) + + + ELSEIF ( zx(mgs,il) <= zxmin .and. cx(mgs,il) > 0.0 ) THEN +! have mass and concentration but no reflectivity, so set reflectivity, using default alpha +! g1 = (6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & +! & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))) + chw = cx(mgs,il) + qr = qx(mgs,il) +! zx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/chw +! zx(mgs,il) = Min(zxmin*1.1, g1*dn(igs(mgs),jy,kgs(mgs))**2*(6.*qr)**2/(chw*(pi*xdn(mgs,il))**2) ) + g1 = (6.0 + alphamax)*(5.0 + alphamax)*(4.0 + alphamax)/ & + & ((3.0 + alphamax)*(2.0 + alphamax)*(1.0 + alphamax)) + zx(mgs,il) = Max(zxmin*1.1, g1*dn(igs(mgs),jy,kgs(mgs))**2*(6*qr)**2/(chw*(pi*xdn(mgs,il))**2) ) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + ELSEIF ( zx(mgs,il) <= zxmin .and. cx(mgs,il) <= 0.0 ) THEN +! How did this happen? + ! set values according to dBZ of -10, or Z = 0.1 +! 0.1 = 1.e18*0.224*an(ix,jy,kz,lzh)*(hwdn/rwdn)**2 + +! write(0,*) 'GS: moment problem! il,c,z,q = ',il,cx(mgs,il),zx(mgs,il),qx(mgs,il) + + zx(mgs,il) = 1.e-19/0.224*(xdn0(lr)/xdn0(il))**2 + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + g1 = (6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))) + z = zx(mgs,il) + qr = qx(mgs,il) +! cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/z + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(6.*qr)**2/(z*(pi*xdn(mgs,il))**2) + an(igs(mgs),jgs,kgs(mgs),ln(il)) = cx(mgs,il) + +! write(0,*) 'GS: moment problem! reset il,c,z,q = ',il,cx(mgs,il),zx(mgs,il),qx(mgs,il) + + ELSE + ! have all valid moments, so find shape parameter + chw = cx(mgs,il) + qr = qx(mgs,il) + z = zx(mgs,il) + + IF ( zx(mgs,il) .gt. 0. ) THEN !{ + +! rdi = z*(pi/6.*1000.)**2*chw/((rho0(mgs)*qr)**2) + rdi = z*(pi/6.*xdn(mgs,il))**2*chw/((rho0(mgs)*qr)**2) + +! alp = 1.e18*(6.+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ +! : ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rdi) - 1.0 + alp = (6.0+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ & + & ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rdi) - 1.0 +! print*,'kz, alp, alpha(mgs,il) = ',kz,alp,alpha(mgs,il),rdi,z,xv + DO i = 1,10 +! IF ( 100.*Abs(alp - alpha(mgs,il))/(Abs(alpha(mgs,il))+1.e-5) .lt. 1. ) EXIT + IF ( Abs(alp - alpha(mgs,il)) .lt. 0.01 ) EXIT + alpha(mgs,il) = Max( alphamin, Min( alphamax, alp ) ) +! alp = 1.e18*(6.+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ +! : ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rdi) - 1.0 + alp = (6.+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ & + & ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rdi) - 1.0 +! print*,'i,alp = ',i,alp + alp = Max( alphamin, Min( alphamax, alp ) ) + ENDDO + + +! check for artificial breakup (graupel/hail larger than allowed max size) + IF ( xv(mgs,il) .gt. xvmx(il) ) THEN !{ + tmp = cx(mgs,il) + + + xv(mgs,il) = Min( xvmx(il), Max( xvmn(il),xv(mgs,il) ) ) + xmas(mgs,il) = xv(mgs,il)*xdn(mgs,il) + cx(mgs,il) = rho0(mgs)*qx(mgs,il)/(xmas(mgs,il)) + IF ( tmp < cx(mgs,il) ) THEN ! breakup + g1 = 36.*(6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))*pi**2) + zx(mgs,il) = zx(mgs,il) + g1*(rho0(mgs)/xdn(mgs,il))**2*( (qx(mgs,il)/tmp)**2 * (tmp-cx(mgs,il)) ) + an(igs(mgs),jgs,kgs(mgs),lz(il)) = zx(mgs,il) + + chw = cx(mgs,il) + qr = qx(mgs,il) + z = zx(mgs,il) + + rdi = z*(pi/6.*xdn(mgs,il))**2*chw/((rho0(mgs)*qr)**2) + alp = (6.0+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ & + & ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rdi) - 1.0 + DO i = 1,10 + IF ( Abs(alp - alpha(mgs,il)) .lt. 0.01 ) EXIT + alpha(mgs,il) = Max( alphamin, Min( alphamax, alp ) ) + alp = (6.+alpha(mgs,il))*(5.0+alpha(mgs,il))*(4.0+alpha(mgs,il))/ & + & ((3.0+alpha(mgs,il))*(2.0+alpha(mgs,il))*rdi) - 1.0 + alp = Max( alphamin, Min( alphamax, alp ) ) + ENDDO + + + ENDIF + ENDIF !} + +! +! Check whether the shape parameter is at or less than the minimum, and if it is, reset the +! concentration or reflectivity to match (prevents reflectivity from being out of balance with Q and N) +! + g1 = (6.0 + alpha(mgs,il))*(5.0 + alpha(mgs,il))*(4.0 + alpha(mgs,il))/ & + & ((3.0 + alpha(mgs,il))*(2.0 + alpha(mgs,il))*(1.0 + alpha(mgs,il))) + + IF ( ( lrescalelow(il) .or. rescale_high_alpha ) .and. & + & ( alpha(mgs,il) <= alphamin .or. alp == alphamin .or. alp == alphamax ) ) THEN !{ + + IF ( rescale_high_alpha .and. alp >= alphamax - 0.01 ) THEN ! reset c at high alpha to prevent growth in Z + cx(mgs,il) = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/z*(6./(pi*xdn(mgs,il)))**2 + an(igs(mgs),jy,kgs(mgs),ln(il)) = cx(mgs,il) + + ELSEIF ( lrescalelow(il) .and. alp <= alphamin .and. .not. (il == lh .and. icvhl2h > 0 ) .and. & + .not. ( il == lr .and. .not. rescale_low_alphar ) ) THEN ! alpha = alphamin, so reset Z to prevent growth in C + + wtest = .false. + IF ( irescalerainopt == 0 ) THEN + wtest = .false. + ELSEIF ( irescalerainopt == 1 ) THEN + wtest = qx(mgs,lc) > qxmin(lc) + ELSEIF ( irescalerainopt == 2 ) THEN + wtest = qx(mgs,lc) > qxmin(lc) .and. wvel(mgs) < rescale_wthresh + ELSEIF ( irescalerainopt == 3 ) THEN + wtest = temcg(mgs) > rescale_tempthresh .and. qx(mgs,lc) > qxmin(lc) .and. wvel(mgs) < rescale_wthresh + ENDIF + + IF ( il == lr .and. ( wtest .or. .not. rescale_low_alphar ) ) THEN + ! certain situations where rain number is adjusted instead of Z. Helps avoid rain being 'zapped' by autoconverted + ! drops (i.e., favor preserving Z when alpha tries to go negative) + chw = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/z*(6./(pi*xdn(mgs,il)))**2 ! g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/z1 + cx(mgs,il) = chw + an(igs(mgs),jy,kgs(mgs),ln(il)) = chw + ELSE + ! Usual resetting of reflectivity moment to force consisntency between Q, N, Z, and alpha when alpha = alphamin + z1 = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/chw + z = z1*(6./(pi*xdn(mgs,il)))**2 + zx(mgs,il) = z + an(igs(mgs),jy,kgs(mgs),lz(il)) = z + ENDIF + +! z1 = g1*dn(igs(mgs),jy,kgs(mgs))**2*(qr)*qr/chw +! z = z1*(6./(pi*xdn(mgs,il)))**2 +! zx(mgs,il) = z +! an(igs(mgs),jy,kgs(mgs),lz(il)) = z + ENDIF + + ENDIF !} + + ENDIF !} + + + ENDIF ! !} + + + + ENDIF !} + + IF ( lzr > 1 ) THEN + alpha2d(igs(mgs),kgs(mgs),1) = Max(alphamin, Min(alphamax, alpha(mgs,lr) )) + ENDIF + IF ( lzh > 1 ) THEN + alpha2d(igs(mgs),kgs(mgs),2) = Max(alphamin, Min(alphamax, alpha(mgs,lh) )) + ENDIF + IF ( lzhl > 1 ) THEN + alpha2d(igs(mgs),kgs(mgs),3) = Max(alphamin, Min(alphamax, alpha(mgs,lhl) )) + ENDIF + + IF ( il == lhl .and. lnhlf > 1 ) THEN + ! update chxf in case cx has changed + chxf(mgs,lhl) = frac*cx(mgs,lhl) + ENDIF + IF ( il == lh .and. lnhf > 1 ) THEN + ! update chxf in case cx has changed + chxf(mgs,lh) = frach*cx(mgs,lh) + ENDIF + + +! IF ( lf > 0 .and. il == lf .and. kgs(mgs) <= 20 .and. ( cx(mgs,lf) + dtp*( pcfwi(mgs) + pcfwd(mgs) ) > 200. .or. cx(mgs,lf) > 400. )) THEN +! write(0,*) 'ix,jy, kz, cf = ',igs(mgs)+ixbeg,jy+jybeg,kgs(mgs), an(igs(mgs),jy,kgs(mgs),ln(lf)),lfsave(mgs,5),lfsave(mgs,6) +! write(0,*) 'qold,qxold,zold,zxold = ',lfsave(mgs,1),lfsave(mgs,2),lfsave(mgs,3),lfsave(mgs,4) +! write(0,*) 'cf_new,pcfwi,pcfwd = ',cx(mgs,lf),cx(mgs,lf) + dtp*( pcfwi(mgs) + pcfwd(mgs) ),pcfwi(mgs) + pcfwd(mgs) +! +! ENDIF + + ENDDO ! mgs + +! CALL cld_cpu('Z-DELABK') + + +! CALL cld_cpu('Z-DELABK') + + + + + ENDIF ! } } + ENDIF ! }} ENDIF ! } DO mgs = 1,ngscnt + + IF ( il == lh ) THEN + IF ( lnhf > 1 ) THEN ! number of graupel from frozen drops + an(igs(mgs),jy,kgs(mgs),lnhf) = Max( chxf(mgs,lh), 0.0) + ENDIF + ENDIF + IF ( il == lhl ) THEN IF ( lnhlf > 1 ) THEN ! number of hail from frozen drops diff --git a/phys/module_physics_init.F b/phys/module_physics_init.F index e26df70a7d..42dd4f0609 100644 --- a/phys/module_physics_init.F +++ b/phys/module_physics_init.F @@ -233,15 +233,6 @@ SUBROUTINE phy_init ( id, config_flags, DT, restart, zfull, zhalf, & t00, p00, tlp, & !for obs-nudging TYR,TYRA,TDLY,TLAG,NYEAR,NDAY,tmn_update, & ACHFX,ACLHF,ACGRDFLX, & - nssl_cccn, & - nssl_alphah,nssl_alphahl, & - nssl_cnoh, nssl_cnohl, & - nssl_cnor, nssl_cnos, & - nssl_rho_qh, nssl_rho_qhl, & - nssl_rho_qs, & -! next 2 flags for Explicit lightning: - nssl_ipelec, & - nssl_isaund, & ! OPTIONAL RQCNCUTEN, RQINCUTEN, & rliq, & !BSINGH:01/31/2013 - Added rliq and is_CAMMGMP_used for CAM5 physics @@ -825,13 +816,6 @@ SUBROUTINE phy_init ( id, config_flags, DT, restart, zfull, zhalf, & TYPE(fdob_type), OPTIONAL, INTENT(INOUT) :: fdob #endif REAL, OPTIONAL, INTENT(IN) :: p00, t00, tlp ! for obs-nudging base-state calcn - REAL, INTENT(IN) :: nssl_cccn, nssl_alphah, nssl_alphahl, & - nssl_cnoh, nssl_cnohl, & - nssl_cnor, nssl_cnos, & - nssl_rho_qh, nssl_rho_qhl, & - nssl_rho_qs - - INTEGER, INTENT(IN) :: nssl_ipelec,nssl_isaund ! WA 12/21/09 REAL,OPTIONAL, DIMENSION( ims:ime , kms:kme , jms:jme ) , & @@ -1019,9 +1003,7 @@ SUBROUTINE phy_init ( id, config_flags, DT, restart, zfull, zhalf, & (config_flags%ra_sw_physics .eq. goddardswscheme ) ) .and. & (config_flags%mp_physics .eq. THOMPSON .or. & config_flags%mp_physics .eq. THOMPSONAERO .or. & - config_flags%mp_physics .eq. NSSL_2MOM .or. & - config_flags%mp_physics .eq. NSSL_2MOMG .or. & - config_flags%mp_physics .eq. NSSL_2MOMCCN .or. & + (config_flags%mp_physics .eq. NSSL_2MOM .and. config_flags%nssl_2moment_on == 1) .or. & config_flags%mp_physics .eq. WSM3SCHEME .or. & config_flags%mp_physics .eq. WSM5SCHEME .or. & config_flags%mp_physics .eq. WSM6SCHEME .or. & @@ -1657,12 +1639,6 @@ SUBROUTINE phy_init ( id, config_flags, DT, restart, zfull, zhalf, & allowed_to_read, start_of_simulation, & !CAMMGMP specific variables ixcldliq, ixcldice, ixnumliq, ixnumice, & - nssl_cccn, nssl_alphah, nssl_alphahl, & - nssl_ipelec, nssl_isaund, & - nssl_cnoh, nssl_cnohl, & - nssl_cnor, nssl_cnos, & - nssl_rho_qh, nssl_rho_qhl, & - nssl_rho_qs, & ccn_conc, & ! RAS z_at_q, inv_dens, qnwfa2d, qnbca2d, & ! G. Thompson frc_urb2d, scalar, num_sc, & ! G. Thompson @@ -4390,12 +4366,6 @@ SUBROUTINE mp_init(RAINNC,SNOWNC,GRAUPELNC,config_flags,restart,warm_rain, allowed_to_read, start_of_simulation, & !CAMMGMP specific variables ixcldliq, ixcldice, ixnumliq, ixnumice, & - nssl_cccn, nssl_alphah, nssl_alphahl, & - nssl_ipelec, nssl_isaund, & - nssl_cnoh, nssl_cnohl, & - nssl_cnor, nssl_cnos, & - nssl_rho_qh, nssl_rho_qhl, & - nssl_rho_qs, & ccn_conc, & ! RAS z_at_q, inv_dens, qnwfa2d, qnbca2d, & ! G. Thompson frc_urb2d, scalar, num_sc, & ! G. Thompson @@ -4425,7 +4395,9 @@ SUBROUTINE mp_init(RAINNC,SNOWNC,GRAUPELNC,config_flags,restart,warm_rain, USE module_mp_wdm5 USE module_mp_wdm6 USE module_mp_wdm7 +#if (WRFPLUS != 1) & !defined( VAR4D ) USE module_mp_nssl_2mom, only: nssl_2mom_init +#endif #if (EM_CORE==1) USE module_mp_cammgmp_driver, ONLY:CAMMGMP_INIT !CAM5's microphysics USE module_mp_morr_two_moment_aero !TWG2017 @@ -4439,12 +4411,6 @@ SUBROUTINE mp_init(RAINNC,SNOWNC,GRAUPELNC,config_flags,restart,warm_rain, LOGICAL , INTENT(IN) :: restart LOGICAL , INTENT(OUT) :: warm_rain,adv_moist_cond REAL , INTENT(IN) :: MPDT, DT, DX, DY - REAL, INTENT(IN), OPTIONAL :: nssl_cccn, nssl_alphah, nssl_alphahl, & - nssl_cnoh, nssl_cnohl, & - nssl_cnor, nssl_cnos, & - nssl_rho_qh, nssl_rho_qhl, & - nssl_rho_qs - INTEGER, INTENT(IN), OPTIONAL :: nssl_ipelec, nssl_isaund LOGICAL , INTENT(IN) :: start_of_simulation INTEGER , INTENT(IN) :: ixcldliq, ixcldice, ixnumliq, ixnumice ! CAMMGMP specific variables @@ -4476,7 +4442,8 @@ SUBROUTINE mp_init(RAINNC,SNOWNC,GRAUPELNC,config_flags,restart,warm_rain, ! Local INTEGER :: i, j, itf, jtf REAL, DIMENSION(20) :: nssl_params - INTEGER :: nssl_ipelec_tmp + INTEGER :: nssl_ipelec_tmp, nssl_ipconc + logical :: nssl_density_on INTEGER :: i_err warm_rain = .false. @@ -4494,33 +4461,6 @@ SUBROUTINE mp_init(RAINNC,SNOWNC,GRAUPELNC,config_flags,restart,warm_rain, ENDDO ENDIF - IF ( present( nssl_cccn ) ) THEN - SELECT CASE(config_flags%mp_physics) - CASE (NSSL_2MOM,NSSL_2MOMCCN) - IF ( config_flags%elec_physics > 0 ) THEN - nssl_ipelec_tmp = nssl_ipelec - ELSE - nssl_ipelec_tmp = 0.0 - ENDIF - CASE DEFAULT - nssl_ipelec_tmp = 0.0 - END SELECT - - nssl_params(1) = nssl_cccn - nssl_params(2) = nssl_alphah - nssl_params(3) = nssl_alphahl - nssl_params(4) = nssl_cnoh - nssl_params(5) = nssl_cnohl - nssl_params(6) = nssl_cnor - nssl_params(7) = nssl_cnos - nssl_params(8) = nssl_rho_qh - nssl_params(9) = nssl_rho_qhl - nssl_params(10) = nssl_rho_qs - nssl_params(11) = nssl_ipelec_tmp - nssl_params(12) = nssl_isaund - - ENDIF - mp_select: SELECT CASE(config_flags%mp_physics) CASE (KESSLERSCHEME) @@ -4653,17 +4593,53 @@ SUBROUTINE mp_init(RAINNC,SNOWNC,GRAUPELNC,config_flags,restart,warm_rain, END IF # endif #endif - CASE (NSSL_1MOMLFO) - CALL nssl_2mom_init(ims,ime, jms,jme, kms,kme,nssl_params,ipctmp=0,mixphase=0,ihvol=-1) ! no separate hail - CASE (NSSL_1MOM) - CALL nssl_2mom_init(ims,ime, jms,jme, kms,kme,nssl_params,ipctmp=0,mixphase=0,ihvol=0) CASE (NSSL_2MOM) - CALL nssl_2mom_init(ims,ime, jms,jme, kms,kme,nssl_params,ipctmp=5,mixphase=0,ihvol=1) - CASE (NSSL_2MOMG) - CALL nssl_2mom_init(ims,ime, jms,jme, kms,kme,nssl_params,ipctmp=5,mixphase=0,ihvol=-1) ! turn off hail - CASE (NSSL_2MOMCCN) - ccn_conc = nssl_cccn/1.225 ! set this to have correct boundary conditions - CALL nssl_2mom_init(ims,ime, jms,jme, kms,kme,nssl_params,ipctmp=5,mixphase=0,ihvol=1) +! Single generalized case (mp_physics=18) replaces previously separate mp_physics values of 17,18,19,20,22 +#if (WRFPLUS != 1) & !defined( VAR4D ) + + IF ( config_flags%elec_physics > 0 ) THEN + nssl_ipelec_tmp = config_flags%nssl_ipelec + ELSE + nssl_ipelec_tmp = 0.0 + ENDIF + + nssl_params(:) = 0 + nssl_params(1) = config_flags%nssl_cccn + nssl_params(2) = config_flags%nssl_alphah + nssl_params(3) = config_flags%nssl_alphahl + nssl_params(4) = config_flags%nssl_cnoh + nssl_params(5) = config_flags%nssl_cnohl + nssl_params(6) = config_flags%nssl_cnor + nssl_params(7) = config_flags%nssl_cnos + nssl_params(8) = config_flags%nssl_rho_qh + nssl_params(9) = config_flags%nssl_rho_qhl + nssl_params(10) = config_flags%nssl_rho_qs + nssl_params(11) = nssl_ipelec_tmp + nssl_params(12) = config_flags%nssl_isaund + nssl_params(13) = 0 ! reserved + nssl_params(14) = 0 ! reserved + nssl_params(15) = 0 ! reserved + + IF ( config_flags%nssl_2moment_on == 0 ) THEN + nssl_ipconc = 0 + ELSE + IF ( config_flags%nssl_3moment > 0 ) THEN + nssl_ipconc = 8 + ELSE + nssl_ipconc = 5 + ENDIF + ENDIF + + IF ( config_flags % nssl_ccn_on > 0 ) THEN + ccn_conc = config_flags%nssl_cccn/1.225 ! set this to have correct boundary conditions + ENDIF + CALL nssl_2mom_init(nssl_params=nssl_params,ipctmp=nssl_ipconc,mixphase=0, & + nssl_density_on=(config_flags%nssl_density_on > 0), & + nssl_hail_on=config_flags%nssl_hail_on > 0, & + nssl_ccn_on=(config_flags%nssl_ccn_on > 0), & + nssl_icdx=config_flags%nssl_icdx, & + nssl_icdxhl=config_flags%nssl_icdxhl,ccn_is_ccna=config_flags%nssl_ccn_is_ccna) +#endif #if (EM_CORE==1) CASE (CAMMGMPSCHEME) ! CAM5's microphysics CALL CAMMGMP_INIT(ixcldliq, ixcldice, ixnumliq, ixnumice & diff --git a/run/README.namelist b/run/README.namelist index 4efccbe253..c7dc6cdf64 100644 --- a/run/README.namelist +++ b/run/README.namelist @@ -487,26 +487,15 @@ Namelist variables for controlling the adaptive time step option: = 13, SBU_YLIN scheme = 14, WDM 5-class scheme = 16, WDM 6-class scheme - = 17, NSSL 2-moment 4-ice scheme (steady background CCN) - = 18, NSSL 2-moment 4-ice scheme with predicted CCN (better for idealized than real cases) - to set a global CCN value, use - nssl_cccn = 0.7e9 ; CCN for NSSL scheme (18). - Also sets same value to ccn_conc for mp_physics=18 - = 19, NSSL 1-moment (7 class: qv,qc,qr,qi,qs,qg,qh; predicts graupel density) - = 21, NSSL 1-moment, (6-class), very similar to Gilmore et al. 2004 - Can set intercepts and particle densities in physics namelist, e.g., nssl_cnor + = 18, NSSL 2-moment 4-ice scheme with predicted (unactivated) CCN (or activated CCN) + to change global CCN value, use + nssl_cccn = 0.7e9 ; CCN (#/m^3 at sea level pressure) for NSSL scheme (18) or nssl_ccn_on=1 + Also sets ccn_conc for mp_physics=18 For NSSL 1-moment schemes, intercept and particle densities can be set for snow, graupel, hail, and rain. For the 1- and 2-moment schemes, the shape parameters for graupel and hail can be set. - nssl_alphah = 0. ! shape parameter for graupel - nssl_alphahl = 2. ! shape parameter for hail - nssl_cnoh = 4.e5 ! graupel intercept - nssl_cnohl = 4.e4 ! hail intercept - nssl_cnor = 8.e5 ! rain intercept - nssl_cnos = 3.e6 ! snow intercept - nssl_rho_qh = 500. ! graupel density - nssl_rho_qhl = 900. ! hail density - nssl_rho_qs = 100. ! snow density + PLEASE SEE README.NSSLmp for options affecting the NSSL scheme + = 17, 19, 21, 22: Legacy NSSL-MP options: see README.NSSLmp for equivalent settings with 18 = 24, WSM 7-class scheme (separate hail and graupel categories) = 26, WDM 7-class scheme (separate hail and graupel categories) = 28, aerosol-aware Thompson scheme with water- and ice-friendly aerosol climatology @@ -571,14 +560,14 @@ Namelist variables for controlling the adaptive time step option: acc_phy_tend = 0 ! set to =1 to output 16 accumulated physics tendencies for potential temp, water vaopr mixing ratio, and U/V wind components; default is 0=off (new in 4.4) progn (max_dom) = 0 ! switch to use mix-activate scheme (Only for Morrison, WDM6, WDM5, - and NSSL_2MOMCCN/NSSL_2MOM - ccn_conc = 1.E8 ! CCN concentration, used by WDM schemes + and NSSL_2MOM) + ccn_conc = 1.E8 ! CCN concentration, used by WDM schemes (set automatically for NSSL_2MOM using nssl_cccn) no_mp_heating = 0 ! normal = 1 ! turn off latent heating from a microphysics scheme use_mp_re = 1 ! whether to use effective radii computed in mp schemes in RRTMG 0: do not use; 1: use effective radii - (The mp schemes that compute effective radii are 3,4,6,7,8,10,14,16,17-21,24,26,28,50-53,55) + (The mp schemes that compute effective radii are 3,4,6,7,8,10,14,16,18,24,26,28,50-53,55) force_read_thompson = .false. ! whether to read tables for mp_physics = 8,28 write_thompson_tables = .true. ! whether to read or compute tables for mp_phyiscs = 8,28 @@ -1063,8 +1052,10 @@ Namelist variables for controlling the adaptive time step option: ua_phys = .false. ! Option to activate UA Noah changes: a different snow-cover physics in Noah, aimed particularly toward improving treatment of snow as it relates to the vegetation canopy. Also uses new columns added in VEGPARM.TBL - do_radar_ref = 0, ! 1 = allows radar reflectivity to be computed using mp-scheme-specific - parameters. Currently works for mp_physics = 2,4,6,7,8,10,14,16,24,26,28 + do_radar_ref = 0, ! 1 = allows radar reflectivity to be computed using mp-scheme-specific + parameters. Currently works for mp_physics = 2,4,6,7,8,10,14,16,24,26,28 + Note that reflectivity is always computed for mp_physics = 9,18, and is + also set =1 when nwp_diagnostics=1 hailcast_opt (max_dom) = 0, ! 1 = 1-D hail growth model which predicts 1st-5th rank-ordered hail diameters, mean hail diameter and standard deviation of hail diameter. (Adams-Selin and Ziegler, MWR Dec 2016.) haildt (max_dom) = 0., ! seconds between WRF-HAILCAST calls (s) diff --git a/share/module_check_a_mundo.F b/share/module_check_a_mundo.F index 1acb3bda82..ad653a9820 100644 --- a/share/module_check_a_mundo.F +++ b/share/module_check_a_mundo.F @@ -3352,6 +3352,98 @@ SUBROUTINE set_physics_rconfigs END IF +!----------------------------------------------------------------------- +! Check for deprecated options with NSSL-MP +!----------------------------------------------------------------------- + DO i = 1, model_config_rec % max_dom + IF ( .NOT. model_config_rec % grid_allowed(i) ) CYCLE + IF ( model_config_rec % mp_physics(i) .EQ. 22 ) THEN + model_config_rec % mp_physics(i) = NSSL_2MOM + model_config_rec % nssl_2moment_on = 1 + model_config_rec % nssl_hail_on(i) = 0 + model_config_rec % nssl_ccn_on = 0 + model_config_rec % nssl_density_on = 1 ! set graupel density + WRITE (wrf_err_message, FMT='(A)') ' **CAUTION** mp_physics = 22 has been deprecated. '// & + 'Instead you can use mp_physics=18, nssl_hail_on=0, nssl_ccn_on=0' + CALL wrf_debug ( 0, wrf_err_message ) + ELSEIF ( model_config_rec % mp_physics(i) .EQ. 17 ) THEN + model_config_rec % mp_physics(i) = NSSL_2MOM + model_config_rec % nssl_2moment_on = 1 + model_config_rec % nssl_hail_on(i) = 1 + model_config_rec % nssl_ccn_on = 0 + model_config_rec % nssl_density_on = 2 ! set graupel+hail density + WRITE (wrf_err_message, FMT='(A)') ' **CAUTION** mp_physics = 17 has been deprecated. '// & + 'Instead you can use mp_physics=18, nssl_ccn_on=0' + ! print statement for deprecated option + CALL wrf_debug ( 0, wrf_err_message ) + ELSEIF ( model_config_rec % mp_physics(i) .EQ. 19 ) THEN + ! single-moment with hail + graupel density + model_config_rec % mp_physics(i) = NSSL_2MOM + model_config_rec % nssl_2moment_on = 0 + model_config_rec % nssl_hail_on(i) = 2 + model_config_rec % nssl_density_on = 1 ! set graupel density + ! print statement for deprecated option + WRITE (wrf_err_message, FMT='(A)') ' **CAUTION** mp_physics = 19 has been deprecated. '// & + 'Instead you can use mp_physics=18, nssl_2moment_on=0, nssl_ccn_on=0' + CALL wrf_debug ( 0, wrf_err_message ) + ELSEIF ( model_config_rec % mp_physics(i) .EQ. 21 ) THEN + ! single-moment without + model_config_rec % mp_physics(i) = NSSL_2MOM + model_config_rec % nssl_2moment_on = 0 + model_config_rec % nssl_hail_on(i) = 0 + model_config_rec % nssl_density_on = 0 ! set graupel density + ! print statement for deprecated option + WRITE (wrf_err_message, FMT='(A)') ' **CAUTION** mp_physics = 21 has been deprecated. '// & + 'Instead you can use mp_physics=18, nssl_2moment_on=0, nssl_ccn_on=0, nssl_hail_on=0' + CALL wrf_debug ( 0, wrf_err_message ) + ENDIF + + IF ( model_config_rec % mp_physics(i) /= NSSL_2MOM ) THEN + ! If not NSSL-MP, make sure extra fields are turned off (in case of stray namelist settings) + model_config_rec % nssl_2moment_on = 0 + model_config_rec % nssl_hail_on(i) = 0 + model_config_rec % nssl_density_on = 0 ! set graupel density + model_config_rec % nssl_3moment = 0 + model_config_rec % nssl_ccn_on = 0 + + ELSE ! make sure settings are consistent + + IF ( model_config_rec % nssl_ccn_on < 0 ) THEN + model_config_rec % nssl_ccn_on = 1 + ENDIF + + IF ( model_config_rec % nssl_2moment_on < 0 ) THEN ! turn on number concentrations + model_config_rec % nssl_2moment_on = 1 + ENDIF + + IF ( model_config_rec % nssl_hail_on(i) < 0 ) THEN + IF ( model_config_rec % nssl_2moment_on == 0 ) THEN + model_config_rec % nssl_hail_on(i) = 2 + ELSE + model_config_rec % nssl_hail_on(i) = 1 + ENDIF + ENDIF + + IF ( model_config_rec % nssl_density_on < 0 ) THEN + IF ( model_config_rec % nssl_hail_on(i) == 1 ) THEN + model_config_rec % nssl_density_on = 2 ! set default of graupel+hail density + ELSE + model_config_rec % nssl_density_on = 1 ! set graupel density (hail off) + ENDIF + ENDIF + + IF ( model_config_rec % nssl_3moment == 1 ) THEN + model_config_rec % nssl_2moment_on = 1 + IF ( model_config_rec % nssl_hail_on(i) == 1 ) THEN + model_config_rec % nssl_3moment = 2 ! 3mom rain, graupel and hail + ELSE + model_config_rec % nssl_3moment = 1 ! 3mom rain and graupel (no hail) + ENDIF + ENDIF + ENDIF + + ENDDO + !----------------------------------------------------------------------- ! If a user requested to compute the radar reflectivity .OR. if this is ! one of the schemes that ALWAYS computes the radar reflectivity, then @@ -3361,16 +3453,11 @@ SUBROUTINE set_physics_rconfigs DO i = 1, model_config_rec % max_dom IF ( .NOT. model_config_rec % grid_allowed(i) ) CYCLE IF ( ( model_config_rec % mp_physics(i) .EQ. MILBRANDT2MOM ) .OR. & -#if (EM_CORE == 1) ( model_config_rec % mp_physics(i) .EQ. NSSL_2MOM ) .OR. & - ( model_config_rec % mp_physics(i) .EQ. NSSL_2MOMG ) .OR. & - ( model_config_rec % mp_physics(i) .EQ. NSSL_2MOMCCN ) .OR. & - ( model_config_rec % mp_physics(i) .EQ. NSSL_1MOM ) .OR. & - ( model_config_rec % mp_physics(i) .EQ. NSSL_1MOMLFO ) .OR. & -#endif ( model_config_rec % do_radar_ref .EQ. 1 ) ) THEN model_config_rec % compute_radar_ref = 1 - END IF + ENDIF + ENDDO !----------------------------------------------------------------------- diff --git a/wrftladj/module_microphysics_driver_ad.F b/wrftladj/module_microphysics_driver_ad.F index de436b2263..ead30bf2cc 100755 --- a/wrftladj/module_microphysics_driver_ad.F +++ b/wrftladj/module_microphysics_driver_ad.F @@ -55,8 +55,7 @@ SUBROUTINE A_MICROPHYSICS_DRIVER(th, thb, rho, rhob, pi_phy, pi_phyb, p& USE module_state_description, ONLY : & KESSLERSCHEME, LINSCHEME, SBU_YLINSCHEME, WSM3SCHEME, WSM5SCHEME & ,WSM6SCHEME, WSM6RSCHEME, ETAMPNEW, THOMPSON, MORR_TWO_MOMENT & - ,GSFCGCESCHEME, WDM5SCHEME, WDM6SCHEME, NSSL_2MOM, NSSL_2MOMCCN & - ,NSSL_1MOM,NSSL_1MOMLFO & ! ,NSSL_3MOM & + ,GSFCGCESCHEME, WDM5SCHEME, WDM6SCHEME, NSSL_2MOM & ,MILBRANDT2MOM, LSCONDSCHEME, MKESSLERSCHEME, CAMMGMPSCHEME, NTU !,MILBRANDT3MOM, ntu3m ! Model Layer @@ -77,7 +76,6 @@ SUBROUTINE A_MICROPHYSICS_DRIVER(th, thb, rho, rhob, pi_phy, pi_phyb, p& IMPLICIT NONE -! ,NSSL_3MOM & !,MILBRANDT3MOM ! Model Layer ! *** add new modules of schemes here diff --git a/wrftladj/module_microphysics_driver_tl.F b/wrftladj/module_microphysics_driver_tl.F index ea57bfbb4d..2562f4d5ae 100755 --- a/wrftladj/module_microphysics_driver_tl.F +++ b/wrftladj/module_microphysics_driver_tl.F @@ -51,8 +51,7 @@ SUBROUTINE G_MICROPHYSICS_DRIVER(th, thd, rho, rhod, pi_phy, pi_phyd, p& USE module_state_description, ONLY : & KESSLERSCHEME, LINSCHEME, SBU_YLINSCHEME, WSM3SCHEME, WSM5SCHEME & ,WSM6SCHEME, WSM6RSCHEME, ETAMPNEW, THOMPSON, MORR_TWO_MOMENT & - ,GSFCGCESCHEME, WDM5SCHEME, WDM6SCHEME, NSSL_2MOM, NSSL_2MOMCCN, NSSL_2MOMG & - ,NSSL_1MOM,NSSL_1MOMLFO & ! ,NSSL_3MOM & + ,GSFCGCESCHEME, WDM5SCHEME, WDM6SCHEME, NSSL_2MOM & ,MILBRANDT2MOM, LSCONDSCHEME, MKESSLERSCHEME, CAMMGMPSCHEME, NTU !,MILBRANDT3MOM, ntu3m ! Model Layer @@ -72,7 +71,6 @@ SUBROUTINE G_MICROPHYSICS_DRIVER(th, thd, rho, rhod, pi_phy, pi_phyd, p& IMPLICIT NONE -! ,NSSL_3MOM & !,MILBRANDT3MOM ! Model Layer ! *** add new modules of schemes here