-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathopts.py
292 lines (268 loc) · 18.7 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import argparse
def parse_opt():
parser = argparse.ArgumentParser()
# Use all train val data to fine tune model for challenge, we don't use it. Just set it for convenient
parser.add_argument('--use_val', type=int, default=0,
help='add the val set for training if True')
parser.add_argument('--use_test', type=int, default=0,
help='add the test set for training if True')
parser.add_argument('--test_online', type=int, default=0,
help='whether test on the coco2014 test dataset for online evaluation')
parser.add_argument('--refine_lr_decay', type=float, default=1,
help='reduce lr to for refining')
# Data input settings
parser.add_argument('--input_json', type=str, default='data/tmp/4/cocotalk.json',
help='path to the json file containing additional info and vocab')
parser.add_argument('--input_fc_dir', type=str, default='data/adaptive/cocobu_fc',
help='path to the directory containing the preprocessed fc feats')
parser.add_argument('--input_att_dir', type=str, default='data/adaptive/cocobu_att',
help='path to the directory containing the preprocessed att feats')
parser.add_argument('--input_box_dir', type=str, default='data/adaptive/cocobu_box',
help='path to the directory containing the boxes of att feats')
# add flag dir
parser.add_argument('--input_flag_dir', type=str, default='data/tmp/cocobu_flag_h_v1',
help="""path to the directory containing the boxes of att feats
cocobu_flag_h: with hierarchical information
cocobu_flag_wh: w/o hierarchical information
""")
###
parser.add_argument('--input_label_h5', type=str, default='data/tmp/4/cocotalk_label.h5',
help='path to the h5file containing the preprocessed dataset')
parser.add_argument('--name_append', type=str, default='',
help='appendix of the name to specify the model to be loaded')
parser.add_argument('--start_from', type=str, default=None,
help="""continue training from saved model at this path. Path must contain files saved by previous training process:
'infos.pkl' : configuration;
'checkpoint' : paths to model file(s) (created by tf).
Note: this file contains absolute paths, be careful when moving files around;
'model.ckpt-*' : file(s) with model definition (created by tf)
'pretrained' : log/tmp/log_aoanet, but only for word_count_threshold_4.
""")
parser.add_argument('--cached_tokens', type=str, default='coco-train-idxs',
help='Cached token file for calculating cider score during self critical training.')
# Model settings
parser.add_argument('--caption_model', type=str, default="",
help='show_tell, show_attend_tell, all_img, fc, att2in, att2in2, att2all2, adaatt, adaattmo, topdown, stackatt, denseatt, transformer')
parser.add_argument('--rnn_size', type=int, default=1024,
help='size of the rnn in number of hidden nodes in each layer')
parser.add_argument('--num_layers', type=int, default=2,
help='number of layers in the RNN')
parser.add_argument('--rnn_type', type=str, default='lstm',
help='rnn, gru, or lstm')
parser.add_argument('--input_encoding_size', type=int, default=1024,
help='the encoding size of each token in the vocabulary, and the image.')
parser.add_argument('--att_hid_size', type=int, default=512,
help='the hidden size of the attention MLP; only useful in show_attend_tell; 0 if not using hidden layer')
parser.add_argument('--fc_feat_size', type=int, default=2048,
help='2048 for resnet, 4096 for vgg')
parser.add_argument('--att_feat_size', type=int, default=2048,
help='2048 for resnet, 512 for vgg')
parser.add_argument('--logit_layers', type=int, default=1,
help='number of layers in the RNN')
parser.add_argument('--use_bn', type=int, default=0,
help='If 1, then do batch_normalization first in att_embed, if 2 then do bn both in the beginning and the end of att_embed')
parser.add_argument('--write_summary', type=bool, default=True,
help='if write the training process using tensorbordx')
# AoA settings
parser.add_argument('--mean_feats', type=int, default=1,
help='use mean pooling of feats?')
parser.add_argument('--refine', type=int, default=1,
help='refining feature vectors?')
parser.add_argument('--refine_aoa', type=int, default=1,
help='use aoa in the refining module?')
parser.add_argument('--use_ff', type=int, default=0,
help='keep feed-forward layer in the refining module?')
parser.add_argument('--dropout_aoa', type=float, default=0.3,
help='dropout_aoa in the refining module?')
parser.add_argument('--aoa_num', type=int, default=6,
help='How many aoa modules are used in encoder?')
parser.add_argument('--ctx_drop', type=int, default=1,
help='apply dropout to the context vector before fed into LSTM?')
parser.add_argument('--decoder_type', type=str, default='AoA',
help='AoA, LSTM, base')
parser.add_argument('--use_multi_head', type=int, default=2,
help='use multi head attention? 0 for addictive single head; 1 for addictive multi head; 2 for productive multi head.')
parser.add_argument('--num_heads', type=int, default=8,
help='number of attention heads?')
parser.add_argument('--multi_head_scale', type=int, default=1,
help='scale q,k,v?')
parser.add_argument('--use_warmup', type=int, default=0,
help='warm up the learing rate?')
parser.add_argument('--acc_steps', type=int, default=1,
help='accumulation steps')
# feature manipulation
parser.add_argument('--norm_att_feat', type=int, default=0,
help='If normalize attention features')
parser.add_argument('--use_box', type=int, default=0,
help='If use box features')
parser.add_argument('--norm_box_feat', type=int, default=0,
help='If use box, do we normalize box feature')
# Optimization: General
parser.add_argument('--max_epochs', type=int, default=25,
help='number of epochs')
parser.add_argument('--batch_size', type=int, default=50,
help='minibatch size')
parser.add_argument('--grad_clip', type=float, default=0.1, #5.,
help='clip gradients at this value')
parser.add_argument('--drop_prob_lm', type=float, default=0.5,
help='strength of dropout in the Language Model RNN')
parser.add_argument('--self_critical_after', type=int, default=-1,
help='After what epoch do we start finetuning the CNN? (-1 = disable; never finetune, 0 = finetune from start)')
parser.add_argument('--seq_per_img', type=int, default=5,
help='number of captions to sample for each image during training. Done for efficiency since CNN forward pass is expensive. E.g. coco has 5 sents/image')
# Sample related
parser.add_argument('--beam_size', type=int, default=1,
help='used when sample_method = greedy, indicates number of beams in beam search. Usually 2 or 3 works well. More is not better. Set this to 1 for faster runtime but a bit worse performance.')
parser.add_argument('--max_length', type=int, default=20,
help='Maximum length during sampling')
parser.add_argument('--length_penalty', type=str, default='',
help='wu_X or avg_X, X is the alpha')
parser.add_argument('--block_trigrams', type=int, default=0,
help='block repeated trigram.')
parser.add_argument('--remove_bad_endings', type=int, default=0,
help='Remove bad endings')
# Optimization: for the Language Model
parser.add_argument('--optim', type=str, default='adam',
help='what update to use? rmsprop|sgd|sgdmom|adagrad|adam')
parser.add_argument('--learning_rate', type=float, default=2e-4,
help='learning rate')
parser.add_argument('--learning_rate_decay_start', type=int, default=0,
help='at what iteration to start decaying learning rate? (-1 = dont) (in epoch)')
parser.add_argument('--learning_rate_decay_every', type=int, default=3,
help='every how many iterations thereafter to drop LR?(in epoch)')
parser.add_argument('--learning_rate_decay_rate', type=float, default=0.8,
help='every how many iterations thereafter to drop LR?(in epoch)')
parser.add_argument('--optim_alpha', type=float, default=0.9,
help='alpha for adam')
parser.add_argument('--optim_beta', type=float, default=0.999,
help='beta used for adam')
parser.add_argument('--optim_epsilon', type=float, default=1e-8,
help='epsilon that goes into denominator for smoothing')
parser.add_argument('--weight_decay', type=float, default=0,
help='weight_decay')
# Transformer
parser.add_argument('--label_smoothing', type=float, default=0.2,
help='')
parser.add_argument('--noamopt', action='store_true',
help='')
parser.add_argument('--noamopt_warmup', type=int, default=2000,
help='')
parser.add_argument('--noamopt_factor', type=float, default=1,
help='')
parser.add_argument('--reduce_on_plateau', action='store_true',
help='')
parser.add_argument('--scheduled_sampling_start', type=int, default=0,
help='at what iteration to start decay gt probability')
parser.add_argument('--scheduled_sampling_increase_every', type=int, default=5,
help='every how many iterations thereafter to gt probability')
parser.add_argument('--scheduled_sampling_increase_prob', type=float, default=0.05,
help='How much to update the prob')
parser.add_argument('--scheduled_sampling_max_prob', type=float, default=0.5,
help='Maximum scheduled sampling prob.')
# Evaluation/Checkpointing
parser.add_argument('--val_images_use', type=int, default=-1,
help='how many images to use when periodically evaluating the validation loss? (-1 = all)')
parser.add_argument('--save_checkpoint_every', type=int, default=10000,
help='how often to save a model checkpoint (in iterations)?')
parser.add_argument('--save_history_ckpt', type=int, default=0,
help='If save checkpoints at every save point')
parser.add_argument('--checkpoint_path', type=str, default='log/tmp/h/log_aoanet',
help='directory to store checkpointed models')
parser.add_argument('--language_eval', type=int, default=1,
help='Evaluate language as well (1 = yes, 0 = no)? BLEU/CIDEr/METEOR/ROUGE_L? requires coco-caption code from Github.')
parser.add_argument('--losses_log_every', type=int, default=25,
help='How often do we snapshot losses, for inclusion in the progress dump? (0 = disable)')
parser.add_argument('--load_best_score', type=int, default=1,
help='Do we load previous best score when resuming training.')
# misc
parser.add_argument('--id', type=str, default='h',
help='an id identifying this run/job. used in cross-val and appended when writing progress files')
parser.add_argument('--train_only', type=int, default=0,
help='if true then use 80k, else use 110k')
# Reward
parser.add_argument('--cider_reward_weight', type=float, default=1,
help='The reward weight from cider')
parser.add_argument('--bleu_reward_weight', type=float, default=0,
help='The reward weight from bleu4')
args = parser.parse_args()
# Check if args are valid
assert args.rnn_size > 0, "rnn_size should be greater than 0"
assert args.num_layers > 0, "num_layers should be greater than 0"
assert args.input_encoding_size > 0, "input_encoding_size should be greater than 0"
assert args.batch_size > 0, "batch_size should be greater than 0"
assert args.drop_prob_lm >= 0 and args.drop_prob_lm < 1, "drop_prob_lm should be between 0 and 1"
assert args.seq_per_img > 0, "seq_per_img should be greater than 0"
assert args.beam_size > 0, "beam_size should be greater than 0"
assert args.save_checkpoint_every > 0, "save_checkpoint_every should be greater than 0"
assert args.losses_log_every > 0, "losses_log_every should be greater than 0"
assert args.language_eval == 0 or args.language_eval == 1, "language_eval should be 0 or 1"
assert args.load_best_score == 0 or args.load_best_score == 1, "language_eval should be 0 or 1"
assert args.train_only == 0 or args.train_only == 1, "language_eval should be 0 or 1"
return args
def add_eval_options(parser):
# Basic options
parser.add_argument('--batch_size', type=int, default=0,
help='if > 0 then overrule, otherwise load from checkpoint.')
parser.add_argument('--num_images', type=int, default=-1,
help='how many images to use when periodically evaluating the loss? (-1 = all)')
parser.add_argument('--language_eval', type=int, default=1,
help='Evaluate language as well (1 = yes, 0 = no)? BLEU/CIDEr/METEOR/ROUGE_L? requires '
'coco-caption code from Github.')
parser.add_argument('--dump_images', type=int, default=0,
help='Dump images into vis/imgs folder for vis? (1=yes,0=no)')
parser.add_argument('--dump_json', type=int, default=1,
help='Dump json with predictions into vis folder? (1=yes,0=no)')
parser.add_argument('--dump_path', type=int, default=0,
help='Write image paths along with predictions into vis json? (1=yes,0=no)')
# Sampling options
parser.add_argument('--sample_method', type=str, default='greedy',
help='greedy; sample; gumbel; top<int>, top<0-1>')
parser.add_argument('--beam_size', type=int, default=2,
help='indicates number of beams in beam search. Usually 2 or 3 works well. More is not better. Set this to 1 for faster runtime but a bit worse performance.')
parser.add_argument('--max_length', type=int, default=20,
help='Maximum length during sampling')
parser.add_argument('--length_penalty', type=str, default='',
help='wu_X or avg_X, X is the alpha')
parser.add_argument('--group_size', type=int, default=1,
help='used for diverse beam search. if group_size is 1, then it\'s normal beam search')
parser.add_argument('--diversity_lambda', type=float, default=0.5,
help='used for diverse beam search. Usually from 0.2 to 0.8. Higher value of lambda produces a more diverse list')
parser.add_argument('--temperature', type=float, default=1.0,
help='temperature when sampling from distributions (i.e. when sample_method = sample). Lower = "safer" predictions.')
parser.add_argument('--decoding_constraint', type=int, default=0,
help='If 1, not allowing same word in a row')
parser.add_argument('--block_trigrams', type=int, default=0,
help='block repeated trigram.')
parser.add_argument('--remove_bad_endings', type=int, default=0,
help='Remove bad endings')
# For evaluation on a folder of images:
parser.add_argument('--image_folder', type=str, default='',
help='If this is nonempty then will predict on the images in this folder path')
parser.add_argument('--image_root', type=str, default='',
help='In case the image paths have to be preprended with a root path to an image folder')
# For evaluation on MSCOCO images from some split:
parser.add_argument('--input_fc_dir', type=str, default='data/adaptive/cocobu_fc',
help='path to the h5file containing the preprocessed dataset')
parser.add_argument('--input_att_dir', type=str, default='data/adaptive/cocobu_att',
help='path to the h5file containing the preprocessed dataset')
parser.add_argument('--input_box_dir', type=str, default='data/adaptive/cocobu_box',
help='path to the h5file containing the preprocessed dataset')
##add flag dir
parser.add_argument('--input_flag_dir', type=str, default='data/tmp/cocobu_flag_h',
help="""path to the directory containing the boxes of att feats
cocobu_flag_h: with hierarchical information
cocobu_flag_wh: w/o hierarchical information
""")
parser.add_argument('--input_label_h5', type=str, default='data/tmp/4/cocotalk_label.h5',
help='path to the h5file containing the preprocessed dataset')
parser.add_argument('--input_json', type=str, default='data/tmp/4/cocotalk.json',
help='path to the json file containing additional info and vocab. empty = fetch from model checkpoint.')
parser.add_argument('--split', type=str, default='test',
help='if running on MSCOCO images, which split to use: val|test|train')
# misc
parser.add_argument('--id', type=str, default='',
help='an id identifying this run/job. used only if language_eval = 1 for appending to intermediate files')
parser.add_argument('--verbose_beam', type=int, default=1,
help='if we need to print out all beam search beams.')
parser.add_argument('--verbose_loss', type=int, default=0,
help='If calculate loss using ground truth during evaluation')