-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy paththickness.py
executable file
·300 lines (242 loc) · 10.4 KB
/
thickness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#!/usr/bin/env python
import nibabel
import numpy as np
from numpy import linalg
import os.path as osp
import nibabel.gifti.giftiio as gio
from nibabel import gifti
import string
import copy
class Mesh():
def __init__(self, fp):
s = gio.read(fp)
self.surface = s
self.vertex = s.darrays[0].data
self.face = s.darrays[1].data
self.compute_neighbours()
self.compute_normals()
def write(self, fp):
gv = gifti.GiftiDataArray.from_array(self.vertex, intent=1008)
gf = gifti.GiftiDataArray.from_array(self.face, intent=1009)
g = gifti.GiftiImage()
g.add_gifti_data_array(gv)
g.add_gifti_data_array(gf)
gio.write(g, fp)
def compute_area(self):
area = 0
for f in self.face:
a = self.vertex[f[1]] - self.vertex[f[0]]
b = self.vertex[f[2]] - self.vertex[f[0]]
c = np.cross(a, b)
area = area + np.sqrt((c ** 2).sum())
return area
def compute_neighbours(self):
self.neighbours = {}
for each in self.face:
assert(len(each) == 3)
for v in each:
c = set(each)
c.remove(v)
self.neighbours.setdefault(v, set()).update(c)
def neighbours_order(self, order=4, save_to_file=None, load_from_file=None):
if load_from_file:
import pickle
print 'loading neighbours from %s'%load_from_file
return pickle.load(open(load_from_file))
n = self.neighbours
n4 = copy.deepcopy(self.neighbours)
for j in range(1, order):
print 'computing %sth order'%(str(j+1))
n5 = copy.deepcopy(n4)
for i in xrange(len(n4.items())):
for e1 in n4[i]:
n5[i] = n5[i].union(n[e1])
if save_to_file:
import pickle
print 'saving to file %s'%save_to_file
pickle.dump(n5, open(save_to_file, 'w'))
return n5
def neighbours_maxdist(self, maxdist=5, save_to_file=None, load_from_file=None):
if load_from_file:
import pickle
print 'loading neighbours from %s'%load_from_file
return pickle.load(open(load_from_file))
import gdist
print 'computing neighbours'
n = []
src = len(self.vertex) * [0]
j = -1
for i, v in enumerate(self.vertex):
if i%1000 == 0: print i, '/', len(self.vertex)
if j != -1:
src[j] = 0
src[i] = 1
j = i
distmap = gdist.compute_gdist(np.array(self.vertex, dtype=np.float64), self.face, np.array(src, dtype=np.int32), max_distance=maxdist)
n.append(list(np.where(distmap<maxdist)[0]))
if save_to_file:
import pickle
print 'saving to file %s'%save_to_file
pickle.dump(n, open(save_to_file, 'w'))
return n
def compute_normals(self):
# compute the normal for each triangle
norms = np.zeros((len(self.vertex), 3))
for triangle in self.face:
sa, sb, sc = triangle
a = self.vertex[sb] - self.vertex[sa]
b = self.vertex[sc] - self.vertex[sa]
norm = np.cross(a, b)
norms[sa] += norm
norms[sb] += norm
norms[sc] += norm
# normalize the normal at each vertex
eps = 1.e-15
self.normal = (norms.T / np.sqrt(eps + np.sum(norms ** 2, 1))).T
def closest_node(self, i, mesh):
''' Returns the closest node (euclidean distance) on a mesh from node i.'''
a1 = np.array(len(mesh.vertex) * list(self.vertex[i])).reshape((len(mesh.vertex),3))
dist = linalg.norm(mesh.vertex - a1, axis=1)
return np.argmin(dist)
def matching_node(self, i, mesh, searchzone, dw=1, nw=1):
''' Looks for the closest point on a target surface 'mesh' from a given node index 'i'.
A searchzone made of nodes helps speeding up the operation.
The difference with self.closest_node() is that there is a small constraint
which drives the matching node to be following the normal direction
dw and nw allow to weigh preferably on distance (dw) or normal (nw) criterion.
'''
def dist_w(d, mindist, maxdist):
w = 1.0 - (d - mindist) / (maxdist - mindist)
return w
def scal_w(s, minscal, maxscal):
w = (s - minscal) / (maxscal - minscal)
return w
searchzone = list(searchzone)
dots = [np.dot(self.normal[i], mesh.normal[each]) for each in searchzone]
dist = [linalg.norm(self.vertex[i] - mesh.vertex[each]) for each in searchzone]
minscal, maxscal = min(dots), max(dots)
mindist, maxdist = min(dist), max(dist)
weights = [dw * dist_w(dist[e], mindist, maxdist) + nw * scal_w(dots[e], minscal, maxscal) for e in xrange(len(searchzone))]
best = searchzone[weights.index(max(weights))]
return best
def closest_point_on_triangle(self, i, mesh, searchzone, dw=1, nw=1):
index = self.matching_node(i, mesh, searchzone, dw=dw, nw=nw)
proj = []
for i1 in mesh.neighbours[index]:
for i2 in mesh.neighbours[index]:
if i1 > i2:
p, is_inside = is_inside_triangle(self.vertex[i], [index, i1, i2], mesh)
if is_inside:
proj.append(p)
if len(proj) != 0:
dist = [linalg.norm(self.vertex[i] - e) for e in proj]
best = proj[dist.index(min(dist))]
return (best, index)
else:
return (mesh.vertex[index], index)
def vertices_around(p, mesh, maxdist=10.0):
''' Returns a set of vertices around a given position.'''
a1 = np.array(len(mesh.vertex) * list(p)).reshape((len(mesh.vertex),3))
dist = linalg.norm(mesh.vertex - a1, axis=1)
return list(np.where(dist<maxdist)[0])
def is_inside_triangle(p, face, mesh):
u = mesh.vertex[face[1]] - mesh.vertex[face[0]]
v = mesh.vertex[face[2]] - mesh.vertex[face[0]]
w = p - mesh.vertex[face[0]]
uu = np.dot(u,u)
uv = np.dot(u,v)
vv = np.dot(v,v)
wu = np.dot(w,u)
wv = np.dot(w,v)
d = uv * uv - uu * vv
invD = 1.0 / d
s = (uv * wv - vv * wu) * invD
t = (uv * wu - uu * wv) * invD
if s < 0 or s > 1:
return ([0,0,0], False)
if t < 0 or (s+t) > 1:
return ([0,0,0], False)
res = np.array(mesh.vertex[face[0]])
u *= s
v *= t
res += u
res += v
return (res, True)
def build_median(im, em, order=4, neighbours_file=None, dw=1, nw=1):
import gdist
print 'computing neighbours list'
att = {'order': order}
if neighbours_file:
if osp.isfile(neighbours_file):
att['load_from_file'] = neighbours_file
else:
att['save_to_file'] = neighbours_file
n4_ext = em.neighbours_order(**att)
intcorr = {} # matching vertices from inner mesh to outer mesh
mm = copy.deepcopy(im)
matching_mesh = copy.deepcopy(im)
curr = 0
processed = set()
current = [curr]
sz = vertices_around(im.vertex[curr], em, maxdist=20.0)
matching_pt, intcorr[curr] = im.closest_point_on_triangle(curr, em, searchzone=sz, dw=dw, nw=nw)
# compute distance map
print 'computing distance map'
src = len(im.vertex) * [0]
src[curr] = 1
src = np.array(src, dtype=np.int32)
distmap = gdist.compute_gdist(np.array(im.vertex, dtype=np.float64), im.face, src)
# init thickness map
matching_mesh.vertex[curr] = matching_pt #em.vertex[intcorr[curr]]
thickness = len(im.vertex) * [-1.0]
thickness[curr] = linalg.norm(im.vertex[curr] - em.vertex[intcorr[curr]])
print 'propagating front...'
nofound = 0
while len(processed) < len(im.vertex):
if len(processed) % 100 == 0:
print len(processed), '/', len(im.vertex), '(%s)'%len(current), 'nofound:', nofound
dm = [distmap[e] for e in current]
best = current[dm.index(min(dm))]
processed.add(best)
curr = best
current.remove(best)
neighbours = [e for e in im.neighbours[curr] if not (e in current or e in processed)]
for e in neighbours:
matching_pt, res = im.closest_point_on_triangle(e, em, searchzone = n4_ext[intcorr[curr]], dw=dw, nw=nw)
dist = linalg.norm(im.vertex[e] - em.vertex[res])
dot = np.dot(em.vertex[res] - im.vertex[e], im.normal[e])
# recompute if the closest point is too distant with the initial searchzone
if dist > 5.0 or dot < 0.0:
nofound += 1
sz = vertices_around(im.vertex[e], em, maxdist=20.0)
matching_pt, res = im.closest_point_on_triangle(e, em, searchzone = sz, dw=dw, nw=nw)
matching_mesh.vertex[e] = matching_pt
thickness[e] = linalg.norm(im.vertex[e] - matching_pt)
intcorr[e] = res
current.append(e)
mm.vertex = (im.vertex + matching_mesh.vertex)*0.5
return mm, thickness, matching_mesh
def main(args):
im = Mesh(args.int)
em = Mesh(args.ext)
mm, thickness, matching_mesh = build_median(im, em, args.order, neighbours_file = '/tmp/%s.neighbours.pickle'%osp.basename(args.ext))
ea = em.compute_area()
ia = im.compute_area()
print 'area: int:', ia, 'ext:', ea
print 'ratio e/i:', ea/ia
gda = gifti.GiftiDataArray.from_array(np.array(thickness), intent=1001)
g = gifti.GiftiImage(darrays=[gda])
gio.write(g, args.thickness)
mm.write(args.mid)
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Compute cortical thickness between two meshes without prior node correspondence')
parser.add_argument("--int", help="internal cortical surface", dest='int', type=str, required=True)
parser.add_argument("--ext", help="external cortical surface", dest='ext', type=str, required=True)
parser.add_argument("--thickness", help="thickness map", dest='thickness', type=str, required=True)
parser.add_argument("--mid", help="central surface", dest='mid', type=str, required=True)
parser.add_argument("-O", help="max order for search zones", dest='order', type=int, default=4, required=False)
parser.add_argument("--dw", help="weight on distances", dest='dw', type=float, default=1, required=False)
parser.add_argument("--nw", help="weight on normals", dest='nw', type=float, default=1, required=False)
args = parser.parse_args()
main(args)