-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclassification_result_analysis.py
330 lines (275 loc) · 9.46 KB
/
classification_result_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
misclassification_list = list()
model_num = 10
iteration_num = 100
dataset_num = 2
rep = 2
test_images = 120
for i in range(model_num):
filename = 'mis_classify_' + str(i+1) + '_.csv'
data_pd = pd.read_csv(filename, sep=',', header=None)
data = data_pd.values
data = data[:, 100:200]
misclassification_list.append(data)
misclassify_dict = dict()
for i in range(len(misclassification_list)):
unique, counts = np.unique(misclassification_list[i], return_counts=True)
dic = dict(zip(unique, counts))
misclassify_dict = {x: misclassify_dict.get(x, 0) + dic.get(x, 0) for x in set(misclassify_dict).union(dic)}
total_mis_classify = np.zeros((test_images*model_num, iteration_num))
for i in range(model_num):
total_mis_classify[i*test_images:(i+1)*test_images, :] = misclassification_list[i]
num_mis_classify_images = np.count_nonzero(total_mis_classify)
for i in range(test_images):
if i+1 in misclassify_dict:
pass
else:
misclassify_dict[i+1] = 0
mis_list = np.zeros(test_images)
print('Misclassified images percentage is calculated by for specific image, the misclassified'
' times divided total classification number')
for i in range(test_images):
mis_percent = misclassify_dict[i+1]/(model_num*iteration_num)*100
mis_list[i] = mis_percent
# print('Misclassified images percentage for image', str(i+1), 'is: %.4f' % mis_percent, '%')
# mis classification above 70%
for i in range(len(mis_list)):
if mis_list[i] >= 70:
print('Mis classification percentage (above 70%) for image {} is {}'.format(int(i+1), mis_list[i]))
cluster_chemistry_result_dataframe = pd.read_csv('test_cluster_chemistry_result.csv', header=None)
cluster_chemistry_result = cluster_chemistry_result_dataframe.values
cluster_chemistry_result = cluster_chemistry_result.reshape(1, int(test_images / (dataset_num*2)))
cluster_chemistry_result = np.repeat(cluster_chemistry_result, rep)
Y = np.copy(cluster_chemistry_result)
for i in range(dataset_num-1):
Y = np.concatenate((Y, cluster_chemistry_result))
# calculate accuracy of each class
y_1 = 0
y_2 = 0
y_3 = 0
y_4 = 0
y_5 = 0
y_6 = 0
for i in range(len(Y)):
if Y[i] == 1:
y_1 = y_1 + 1
for i in range(len(Y)):
if Y[i] == 2:
y_2 = y_2 + 1
for i in range(len(Y)):
if Y[i] == 3:
y_3 = y_3 + 1
for i in range(len(Y)):
if Y[i] == 4:
y_4 = y_4 + 1
for i in range(len(Y)):
if Y[i] == 5:
y_5 = y_5 + 1
for i in range(len(Y)):
if Y[i] == 6:
y_6 = y_6 + 1
y_1 = y_1 * 100 * 10
y_2 = y_2 * 100 * 10
y_3 = y_3 * 100 * 10
y_4 = y_4 * 100 * 10
y_5 = y_5 * 100 * 10
y_6 = y_6 * 100 * 10
y_1_mis = 0
y_2_mis = 0
y_3_mis = 0
y_4_mis = 0
y_5_mis = 0
y_6_mis = 0
for row in range(total_mis_classify.shape[0]):
for col in range(total_mis_classify.shape[1]):
mis_sample = total_mis_classify[row, col]
if mis_sample != 0:
mis_sample = mis_sample - 1
mis_sample_class = Y[int(mis_sample)]
if mis_sample_class == 1:
y_1_mis = y_1_mis + 1
if mis_sample_class == 2:
y_2_mis = y_2_mis + 1
if mis_sample_class == 3:
y_3_mis = y_3_mis + 1
if mis_sample_class == 4:
y_4_mis = y_4_mis + 1
if mis_sample_class == 5:
y_5_mis = y_5_mis + 1
if mis_sample_class == 6:
y_6_mis = y_6_mis + 1
# accuracy for group 1
y_1_acc = y_1_mis / y_1
y_1_acc = (1 - y_1_acc) * 100
# accuracy for group 2
y_2_acc = y_2_mis / y_2
y_2_acc = (1 - y_2_acc) * 100
# accuracy for group 3
y_3_acc = y_3_mis / y_3
y_3_acc = (1 - y_3_acc) * 100
# accuracy for group 4
y_4_acc = y_4_mis / y_4
y_4_acc = (1 - y_4_acc) * 100
# accuracy for group 5
y_5_acc = y_5_mis / y_5
y_5_acc = (1 - y_5_acc) * 100
# accuracy for group 6
y_6_acc = y_6_mis / y_6
y_6_acc = (1 - y_6_acc) * 100
x = [1, 2, 3, 4, 5, 6]
test_accuracy_list = list()
test_accuracy_list.append(y_1_acc)
test_accuracy_list.append(y_2_acc)
test_accuracy_list.append(y_3_acc)
test_accuracy_list.append(y_4_acc)
test_accuracy_list.append(y_5_acc)
test_accuracy_list.append(y_6_acc)
# test dataset accuracy of each class
fig_accuracy_plot, ax = plt.subplots()
# ax.set_title('Accuracy of each class')
plt.scatter(x, test_accuracy_list)
plt.xlabel('class number', fontsize=15)
plt.ylabel('Accuracy of each class (percentage)', fontsize=15)
plt.yticks(fontsize=9)
plt.xticks([1, 2, 3, 4, 5, 6], ['class 1', 'class 2', 'class 3', 'class 4', 'class 5', 'class 6'], fontsize=9)
plt.show()
fig_accuracy_plot.savefig('Test accuracy of each class.jpg')
plt.close(fig_accuracy_plot)
# plot accuracy histogram
for i in range(len(Y)):
if Y[i] != np.min(Y[i:]):
index = i + np.where(Y[i:] == np.min(Y[i:]))[0][0]
Y[i], Y[index] = Y[index], Y[i]
mis_list[i], mis_list[index] = mis_list[index], mis_list[i]
for i in range(6+1):
Y_sub = Y[np.where(Y == i)]
mis_list_sub = mis_list[np.where(Y == i)]
for num in range(len(mis_list_sub)):
if mis_list_sub[num] != np.min(mis_list_sub[num:]):
index = num + np.where(mis_list_sub[num:] == np.min(mis_list_sub[num:]))[0][0]
mis_list_sub[num], mis_list_sub[index] = mis_list_sub[index], mis_list_sub[num]
Y_sub[num], Y_sub[index] = Y_sub[index], Y_sub[num]
# print(mis_list_sub)
mis_list[np.where(Y == i)] = mis_list_sub
x = []
for i in range(test_images):
x.append(i)
x_tick = []
for i in range(test_images):
x_tick.append(str(Y[i]))
color = []
for i in range(test_images):
if Y[i] == 1:
color.append('red')
if Y[i] == 2:
color.append('green')
if Y[i] == 3:
color.append('cyan')
if Y[i] == 4:
color.append('yellow')
if Y[i] == 5:
color.append('purple')
if Y[i] == 6:
color.append('black')
fig, ax = plt.subplots()
x = np.arange(120)
plt.bar(x, height=mis_list, color=color)
x_line = np.linspace(x[0], x[47], 1000)
y = np.zeros(1000)
y = y + test_accuracy_list[0]
ax.plot(x_line, y)
x_line = np.linspace(x[48], x[51], 1000)
y = np.zeros(1000)
y = y + test_accuracy_list[1]
ax.plot(x_line, y)
x_line = np.linspace(x[52], x[63], 1000)
y = np.zeros(1000)
y = y + test_accuracy_list[2]
ax.plot(x_line, y)
x_line = np.linspace(x[64], x[87], 1000)
y = np.zeros(1000)
y = y + test_accuracy_list[3]
ax.plot(x_line, y)
x_line = np.linspace(x[88], x[111], 1000)
y = np.zeros(1000)
y = y + test_accuracy_list[4]
ax.plot(x_line, y)
x_line = np.linspace(x[112], x[119], 1000)
y = np.zeros(1000)
y = y + test_accuracy_list[5]
ax.plot(x_line, y)
plt.xlabel('Test image class number', fontsize=15)
plt.ylabel('Mis-classification percentage', fontsize=15)
# ax.set_title('Mis-classification percentage of each image', fontsize=20)
plt.xticks([23, 49, 62, 77, 101, 117],
['class 1', 'class 2', 'class 3', 'class 4', 'class 5', 'class 6'], fontsize=9)
fig.savefig('Mis-classification percentage color class.jpg')
plt.show()
plt.close(fig)
mis_list_non_zero = []
Y_non_zero = []
color_non_zero = []
x = []
index = 0
for i in range(len(Y)):
if mis_list[i] != 0:
x.append(index)
mis_list_non_zero.append(mis_list[i])
Y_non_zero.append(Y[i])
if Y[i] == 1:
color_non_zero.append('red')
if Y[i] == 2:
color_non_zero.append('green')
if Y[i] == 3:
color_non_zero.append('cyan')
if Y[i] == 4:
color_non_zero.append('yellow')
if Y[i] == 5:
color_non_zero.append('purple')
if Y[i] == 6:
color_non_zero.append('black')
index = index + 1
x = np.asarray(x)
mis_list_non_zero = np.asarray(mis_list_non_zero)
Y_non_zero = np.asarray(Y_non_zero)
fig, ax = plt.subplots()
plt.bar(x, height=mis_list_non_zero, color=color_non_zero)
# Y_non_zero
# array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
# 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
# 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
# 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6], dtype=int64)
x_line = np.linspace(x[0], x[22], 1000)
y = np.zeros(1000)
y = y + test_accuracy_list[0]
ax.plot(x_line, y)
x_line = np.linspace(x[23], x[26], 1000)
y = np.zeros(1000)
y = y + test_accuracy_list[1]
ax.plot(x_line, y)
x_line = np.linspace(x[27], x[31], 1000)
y = np.zeros(1000)
y = y + test_accuracy_list[2]
ax.plot(x_line, y)
x_line = np.linspace(x[32], x[49], 1000)
y = np.zeros(1000)
y = y + test_accuracy_list[3]
ax.plot(x_line, y)
x_line = np.linspace(x[50], x[64], 1000)
y = np.zeros(1000)
y = y + test_accuracy_list[4]
ax.plot(x_line, y)
x_line = np.linspace(x[65], x[71], 1000)
y = np.zeros(1000)
y = y + test_accuracy_list[5]
ax.plot(x_line, y)
plt.xlabel('Test image class number', fontsize=13)
plt.ylabel('Mis-classification percentage', fontsize=13)
# ax.set_title('Mis-classification percentage of each image', fontsize=17)
plt.xticks([11, 24, 31, 40, 58, 68],
['class 1', 'class 2', 'class 3', 'class 4', 'class 5', 'class 6'], fontsize=9)
fig.savefig('Mis-classification percentage color class without zero mis-classification.jpg')
plt.show()
plt.close(fig)