-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmultiScaleBlurInferenceFull.m
48 lines (38 loc) · 1.33 KB
/
multiScaleBlurInferenceFull.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
% multiScaleBlurInference -- Blur inference given feature map from multiple
% scale. This function solves Eq.(19) in the paper.
% Paras:
% @feature : Input grayscale featureage.
% @alpha : Parameter controlling weight for multiscale inference.
% Author: Xin Yi ([email protected])
% Date : 02/01/2016
function [final_fea_map] = multiScaleBlurInferenceFull(feature, alpha)
%% Parameters
nStates = 2;
[nRows, nCols] = size(feature.scale1);
%% Graphic model generation
[adj, nNodes] = loadAdjMatrixFull(nRows, nCols);
edgeStruct = UGM_makeEdgeStruct(adj,nStates);
fea_scale1 = feature.scale1;
fea_scale2 = feature.scale2;
fea_scale3 = feature.scale3;
X = [fea_scale3(:); fea_scale2(:); fea_scale1(:)];
Xstd = UGM_standardizeCols(reshape(X,[1 1 nNodes]),1);
% Make nodePot
nodePot = zeros(nNodes,nStates);
nodePot(:,1) = exp(-abs(1-Xstd(:)));
nodePot(:,2) = exp(-abs(Xstd(:)));
% Make edgePot
edgePot = zeros(nStates,nStates,edgeStruct.nEdges);
for e = 1:edgeStruct.nEdges
pot_same = 1;
pot_diff = exp(-alpha);
edgePot(:,:,e) = [pot_same pot_diff; pot_diff pot_same];
end
%% Hierachical inference
[nodeBel, ~, ~] = UGM_Infer_LBP(nodePot,edgePot,edgeStruct);
%% Seperate to three maps
nNodes = nRows*nCols;
%H^1
final_fea_map = reshape(nodeBel(1:nNodes,2), nRows, nCols);
final_fea_map = final_fea_map * -1 + 1;
end