forked from zuoyebang/bitalostable
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtable_cache.go
986 lines (869 loc) · 27 KB
/
table_cache.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
// Copyright 2020 The LevelDB-Go and Pebble and Bitalostored Authors. All rights reserved. Use
// of this source code is governed by a BSD-style license that can be found in
// the LICENSE file.
package bitalostable
import (
"bytes"
"context"
"fmt"
"io"
"runtime/debug"
"runtime/pprof"
"sync"
"sync/atomic"
"unsafe"
"github.com/cockroachdb/errors"
"github.com/zuoyebang/bitalostable/internal/base"
"github.com/zuoyebang/bitalostable/internal/invariants"
"github.com/zuoyebang/bitalostable/internal/keyspan"
"github.com/zuoyebang/bitalostable/internal/manifest"
"github.com/zuoyebang/bitalostable/internal/private"
"github.com/zuoyebang/bitalostable/sstable"
"github.com/zuoyebang/bitalostable/vfs"
)
var emptyIter = &errorIter{err: nil}
var emptyKeyspanIter = &errorKeyspanIter{err: nil}
// filteredAll is a singleton internalIterator implementation used when an
// sstable does contain point keys, but all the keys are filtered by the active
// PointKeyFilters set in the iterator's IterOptions.
//
// filteredAll implements filteredIter, ensuring the level iterator recognizes
// when it may need to return file boundaries to keep the rangeDelIter open
// during mergingIter operation.
var filteredAll = &filteredAllKeysIter{errorIter: errorIter{err: nil}}
var _ filteredIter = filteredAll
type filteredAllKeysIter struct {
errorIter
}
func (s *filteredAllKeysIter) MaybeFilteredKeys() bool {
return true
}
var tableCacheLabels = pprof.Labels("bitalostable", "table-cache")
// tableCacheOpts contains the db specific fields
// of a table cache. This is stored in the tableCacheContainer
// along with the table cache.
// NB: It is important to make sure that the fields in this
// struct are read-only. Since the fields here are shared
// by every single tableCacheShard, if non read-only fields
// are updated, we could have unnecessary evictions of those
// fields, and the surrounding fields from the CPU caches.
type tableCacheOpts struct {
atomic struct {
// iterCount in the tableCacheOpts keeps track of iterators
// opened or closed by a DB. It's used to keep track of
// leaked iterators on a per-db level.
iterCount *int32
}
logger Logger
cacheID uint64
dirname string
fs vfs.FS
opts sstable.ReaderOptions
filterMetrics *FilterMetrics
}
// tableCacheContainer contains the table cache and
// fields which are unique to the DB.
type tableCacheContainer struct {
tableCache *TableCache
// dbOpts contains fields relevant to the table cache
// which are unique to each DB.
dbOpts tableCacheOpts
}
// newTableCacheContainer will panic if the underlying cache in the table cache
// doesn't match Options.Cache.
func newTableCacheContainer(
tc *TableCache, cacheID uint64, dirname string, fs vfs.FS, opts *Options, size int,
) *tableCacheContainer {
// We will release a ref to table cache acquired here when tableCacheContainer.close is called.
if tc != nil {
if tc.cache != opts.Cache {
panic("bitalostable: underlying cache for the table cache and db are different")
}
tc.Ref()
} else {
// NewTableCache should create a ref to tc which the container should
// drop whenever it is closed.
tc = NewTableCache(opts.Cache, opts.Experimental.TableCacheShards, size)
}
t := &tableCacheContainer{}
t.tableCache = tc
t.dbOpts.logger = opts.Logger
t.dbOpts.cacheID = cacheID
t.dbOpts.dirname = dirname
t.dbOpts.fs = fs
t.dbOpts.opts = opts.MakeReaderOptions()
t.dbOpts.filterMetrics = &FilterMetrics{}
t.dbOpts.atomic.iterCount = new(int32)
return t
}
// Before calling close, make sure that there will be no further need
// to access any of the files associated with the store.
func (c *tableCacheContainer) close() error {
// We want to do some cleanup work here. Check for leaked iterators
// by the DB using this container. Note that we'll still perform cleanup
// below in the case that there are leaked iterators.
var err error
if v := atomic.LoadInt32(c.dbOpts.atomic.iterCount); v > 0 {
err = errors.Errorf("leaked iterators: %d", errors.Safe(v))
}
// Release nodes here.
for _, shard := range c.tableCache.shards {
if shard != nil {
shard.removeDB(&c.dbOpts)
}
}
return firstError(err, c.tableCache.Unref())
}
func (c *tableCacheContainer) newIters(
file *manifest.FileMetadata, opts *IterOptions, internalOpts internalIterOpts,
) (internalIterator, keyspan.FragmentIterator, error) {
return c.tableCache.getShard(file.FileNum).newIters(file, opts, internalOpts, &c.dbOpts)
}
func (c *tableCacheContainer) newRangeKeyIter(
file *manifest.FileMetadata, opts *keyspan.SpanIterOptions,
) (keyspan.FragmentIterator, error) {
return c.tableCache.getShard(file.FileNum).newRangeKeyIter(file, opts, &c.dbOpts)
}
func (c *tableCacheContainer) getTableProperties(file *fileMetadata) (*sstable.Properties, error) {
return c.tableCache.getShard(file.FileNum).getTableProperties(file, &c.dbOpts)
}
func (c *tableCacheContainer) evict(fileNum FileNum) {
c.tableCache.getShard(fileNum).evict(fileNum, &c.dbOpts, false)
}
func (c *tableCacheContainer) metrics() (CacheMetrics, FilterMetrics) {
var m CacheMetrics
for i := range c.tableCache.shards {
s := c.tableCache.shards[i]
s.mu.RLock()
m.Count += int64(len(s.mu.nodes))
s.mu.RUnlock()
m.Hits += atomic.LoadInt64(&s.atomic.hits)
m.Misses += atomic.LoadInt64(&s.atomic.misses)
}
m.Size = m.Count * int64(unsafe.Sizeof(sstable.Reader{}))
f := FilterMetrics{
Hits: atomic.LoadInt64(&c.dbOpts.filterMetrics.Hits),
Misses: atomic.LoadInt64(&c.dbOpts.filterMetrics.Misses),
}
return m, f
}
func (c *tableCacheContainer) withReader(meta *fileMetadata, fn func(*sstable.Reader) error) error {
s := c.tableCache.getShard(meta.FileNum)
v := s.findNode(meta, &c.dbOpts)
defer s.unrefValue(v)
if v.err != nil {
base.MustExist(c.dbOpts.fs, v.filename, c.dbOpts.logger, v.err)
return v.err
}
return fn(v.reader)
}
func (c *tableCacheContainer) iterCount() int64 {
return int64(atomic.LoadInt32(c.dbOpts.atomic.iterCount))
}
// TableCache is a shareable cache for open sstables.
type TableCache struct {
// atomic contains fields which are accessed atomically. Go allocations
// are guaranteed to be 64-bit aligned which we take advantage of by
// placing the 64-bit fields which we access atomically at the beginning
// of the TableCache struct. For more information, see
// https://golang.org/pkg/sync/atomic/#pkg-note-BUG.
atomic struct {
refs int64
}
cache *Cache
shards []*tableCacheShard
}
// Ref adds a reference to the table cache. Once tableCache.init returns,
// the table cache only remains valid if there is at least one reference
// to it.
func (c *TableCache) Ref() {
v := atomic.AddInt64(&c.atomic.refs, 1)
// We don't want the reference count to ever go from 0 -> 1,
// cause a reference count of 0 implies that we've closed the cache.
if v <= 1 {
panic(fmt.Sprintf("bitalostable: inconsistent reference count: %d", v))
}
}
// Unref removes a reference to the table cache.
func (c *TableCache) Unref() error {
v := atomic.AddInt64(&c.atomic.refs, -1)
switch {
case v < 0:
panic(fmt.Sprintf("bitalostable: inconsistent reference count: %d", v))
case v == 0:
var err error
for i := range c.shards {
// The cache shard is not allocated yet, nothing to close
if c.shards[i] == nil {
continue
}
err = firstError(err, c.shards[i].Close())
}
// Unref the cache which we create a reference to when the tableCache
// is first instantiated.
c.cache.Unref()
return err
}
return nil
}
// NewTableCache will create a reference to the table cache. It is the callers responsibility
// to call tableCache.Unref if they will no longer hold a reference to the table cache.
func NewTableCache(cache *Cache, numShards int, size int) *TableCache {
if size == 0 {
panic("bitalostable: cannot create a table cache of size 0")
} else if numShards == 0 {
panic("bitalostable: cannot create a table cache with 0 shards")
}
c := &TableCache{}
c.cache = cache
c.cache.Ref()
c.shards = make([]*tableCacheShard, numShards)
for i := range c.shards {
c.shards[i] = &tableCacheShard{}
c.shards[i].init(size / len(c.shards))
}
// Hold a ref to the cache here.
c.atomic.refs = 1
return c
}
func (c *TableCache) getShard(fileNum FileNum) *tableCacheShard {
return c.shards[uint64(fileNum)%uint64(len(c.shards))]
}
type tableCacheKey struct {
cacheID uint64
fileNum FileNum
}
type tableCacheShard struct {
// WARNING: The following struct `atomic` contains fields are accessed atomically.
//
// Go allocations are guaranteed to be 64-bit aligned which we take advantage
// of by placing the 64-bit fields which we access atomically at the beginning
// of the DB struct. For more information, see https://golang.org/pkg/sync/atomic/#pkg-note-BUG.
atomic struct {
hits int64
misses int64
iterCount int32
}
size int
mu struct {
sync.RWMutex
nodes map[tableCacheKey]*tableCacheNode
// The iters map is only created and populated in race builds.
iters map[io.Closer][]byte
handHot *tableCacheNode
handCold *tableCacheNode
handTest *tableCacheNode
coldTarget int
sizeHot int
sizeCold int
sizeTest int
}
releasing sync.WaitGroup
releasingCh chan *tableCacheValue
releaseLoopExit sync.WaitGroup
}
func (c *tableCacheShard) init(size int) {
c.size = size
c.mu.nodes = make(map[tableCacheKey]*tableCacheNode)
c.mu.coldTarget = size
c.releasingCh = make(chan *tableCacheValue, 100)
c.releaseLoopExit.Add(1)
go c.releaseLoop()
if invariants.RaceEnabled {
c.mu.iters = make(map[io.Closer][]byte)
}
}
func (c *tableCacheShard) releaseLoop() {
pprof.Do(context.Background(), tableCacheLabels, func(context.Context) {
defer c.releaseLoopExit.Done()
for v := range c.releasingCh {
v.release(c)
}
})
}
// checkAndIntersectFilters checks the specific table and block property filters
// for intersection with any available table and block-level properties. Returns
// true for ok if this table should be read by this iterator.
func (c *tableCacheShard) checkAndIntersectFilters(
v *tableCacheValue,
tableFilter func(userProps map[string]string) bool,
blockPropertyFilters []BlockPropertyFilter,
boundLimitedFilter sstable.BoundLimitedBlockPropertyFilter,
) (ok bool, filterer *sstable.BlockPropertiesFilterer, err error) {
if tableFilter != nil &&
!tableFilter(v.reader.Properties.UserProperties) {
return false, nil, nil
}
if boundLimitedFilter != nil || len(blockPropertyFilters) > 0 {
filterer = sstable.NewBlockPropertiesFilterer(blockPropertyFilters, boundLimitedFilter)
intersects, err :=
filterer.IntersectsUserPropsAndFinishInit(v.reader.Properties.UserProperties)
if err != nil {
return false, nil, err
}
if !intersects {
return false, nil, nil
}
}
return true, filterer, nil
}
func (c *tableCacheShard) newIters(
file *manifest.FileMetadata,
opts *IterOptions,
internalOpts internalIterOpts,
dbOpts *tableCacheOpts,
) (internalIterator, keyspan.FragmentIterator, error) {
// Calling findNode gives us the responsibility of decrementing v's
// refCount. If opening the underlying table resulted in error, then we
// decrement this straight away. Otherwise, we pass that responsibility to
// the sstable iterator, which decrements when it is closed.
v := c.findNode(file, dbOpts)
if v.err != nil {
defer c.unrefValue(v)
base.MustExist(dbOpts.fs, v.filename, dbOpts.logger, v.err)
return nil, nil, v.err
}
ok := true
var filterer *sstable.BlockPropertiesFilterer
var err error
if opts != nil {
ok, filterer, err = c.checkAndIntersectFilters(v, opts.TableFilter,
opts.PointKeyFilters, internalOpts.boundLimitedFilter)
}
if err != nil {
c.unrefValue(v)
return nil, nil, err
}
// NB: range-del iterator does not maintain a reference to the table, nor
// does it need to read from it after creation.
rangeDelIter, err := v.reader.NewRawRangeDelIter()
if err != nil {
c.unrefValue(v)
return nil, nil, err
}
if !ok {
c.unrefValue(v)
// Return an empty iterator. This iterator has no mutable state, so
// using a singleton is fine.
// NB: We still return the potentially non-empty rangeDelIter. This
// ensures the iterator observes the file's range deletions even if the
// block property filters exclude all the file's point keys. The range
// deletions may still delete keys lower in the LSM in files that DO
// match the active filters.
//
// The point iterator returned must implement the filteredIter
// interface, so that the level iterator surfaces file boundaries when
// range deletions are present.
return filteredAll, rangeDelIter, err
}
var iter sstable.Iterator
useFilter := true
if opts != nil {
useFilter = manifest.LevelToInt(opts.level) != 6 || opts.UseL6Filters
}
if internalOpts.bytesIterated != nil {
iter, err = v.reader.NewCompactionIter(internalOpts.bytesIterated)
} else {
iter, err = v.reader.NewIterWithBlockPropertyFilters(
opts.GetLowerBound(), opts.GetUpperBound(), filterer, useFilter, internalOpts.stats)
}
if err != nil {
if rangeDelIter != nil {
_ = rangeDelIter.Close()
}
c.unrefValue(v)
return nil, nil, err
}
// NB: v.closeHook takes responsibility for calling unrefValue(v) here. Take
// care to avoid introduceingan allocation here by adding a closure.
iter.SetCloseHook(v.closeHook)
atomic.AddInt32(&c.atomic.iterCount, 1)
atomic.AddInt32(dbOpts.atomic.iterCount, 1)
if invariants.RaceEnabled {
c.mu.Lock()
c.mu.iters[iter] = debug.Stack()
c.mu.Unlock()
}
return iter, rangeDelIter, nil
}
func (c *tableCacheShard) newRangeKeyIter(
file *manifest.FileMetadata, opts *keyspan.SpanIterOptions, dbOpts *tableCacheOpts,
) (keyspan.FragmentIterator, error) {
// Calling findNode gives us the responsibility of decrementing v's
// refCount. If opening the underlying table resulted in error, then we
// decrement this straight away. Otherwise, we pass that responsibility to
// the sstable iterator, which decrements when it is closed.
v := c.findNode(file, dbOpts)
if v.err != nil {
defer c.unrefValue(v)
base.MustExist(dbOpts.fs, v.filename, dbOpts.logger, v.err)
return nil, v.err
}
ok := true
var err error
// Don't filter a table's range keys if the file contains RANGEKEYDELs.
// The RANGEKEYDELs may delete range keys in other levels. Skipping the
// file's range key blocks may surface deleted range keys below. This is
// done here, rather than deferring to the block-property collector in order
// to maintain parity with point keys and the treatment of RANGEDELs.
if opts != nil && v.reader.Properties.NumRangeKeyDels == 0 {
ok, _, err = c.checkAndIntersectFilters(v, nil, opts.RangeKeyFilters, nil)
}
if err != nil {
c.unrefValue(v)
return nil, err
}
if !ok {
c.unrefValue(v)
// Return the empty iterator. This iterator has no mutable state, so
// using a singleton is fine.
return emptyKeyspanIter, err
}
var iter keyspan.FragmentIterator
iter, err = v.reader.NewRawRangeKeyIter()
// iter is a block iter that holds the entire value of the block in memory.
// No need to hold onto a ref of the cache value.
c.unrefValue(v)
if err != nil || iter == nil {
return nil, err
}
return iter, nil
}
// getTableProperties return sst table properties for target file
func (c *tableCacheShard) getTableProperties(
file *fileMetadata, dbOpts *tableCacheOpts,
) (*sstable.Properties, error) {
// Calling findNode gives us the responsibility of decrementing v's refCount here
v := c.findNode(file, dbOpts)
defer c.unrefValue(v)
if v.err != nil {
return nil, v.err
}
return &v.reader.Properties, nil
}
// releaseNode releases a node from the tableCacheShard.
//
// c.mu must be held when calling this.
func (c *tableCacheShard) releaseNode(n *tableCacheNode) {
c.unlinkNode(n)
c.clearNode(n)
}
// unlinkNode removes a node from the tableCacheShard, leaving the shard
// reference in place.
//
// c.mu must be held when calling this.
func (c *tableCacheShard) unlinkNode(n *tableCacheNode) {
key := tableCacheKey{n.cacheID, n.meta.FileNum}
delete(c.mu.nodes, key)
switch n.ptype {
case tableCacheNodeHot:
c.mu.sizeHot--
case tableCacheNodeCold:
c.mu.sizeCold--
case tableCacheNodeTest:
c.mu.sizeTest--
}
if n == c.mu.handHot {
c.mu.handHot = c.mu.handHot.prev()
}
if n == c.mu.handCold {
c.mu.handCold = c.mu.handCold.prev()
}
if n == c.mu.handTest {
c.mu.handTest = c.mu.handTest.prev()
}
if n.unlink() == n {
// This was the last entry in the cache.
c.mu.handHot = nil
c.mu.handCold = nil
c.mu.handTest = nil
}
n.links.prev = nil
n.links.next = nil
}
func (c *tableCacheShard) clearNode(n *tableCacheNode) {
if v := n.value; v != nil {
n.value = nil
c.unrefValue(v)
}
}
// unrefValue decrements the reference count for the specified value, releasing
// it if the reference count fell to 0. Note that the value has a reference if
// it is present in tableCacheShard.mu.nodes, so a reference count of 0 means
// the node has already been removed from that map.
func (c *tableCacheShard) unrefValue(v *tableCacheValue) {
if atomic.AddInt32(&v.refCount, -1) == 0 {
c.releasing.Add(1)
c.releasingCh <- v
}
}
// findNode returns the node for the table with the given file number, creating
// that node if it didn't already exist. The caller is responsible for
// decrementing the returned node's refCount.
func (c *tableCacheShard) findNode(meta *fileMetadata, dbOpts *tableCacheOpts) *tableCacheValue {
// Fast-path for a hit in the cache.
c.mu.RLock()
key := tableCacheKey{dbOpts.cacheID, meta.FileNum}
if n := c.mu.nodes[key]; n != nil && n.value != nil {
// Fast-path hit.
//
// The caller is responsible for decrementing the refCount.
v := n.value
atomic.AddInt32(&v.refCount, 1)
c.mu.RUnlock()
atomic.StoreInt32(&n.referenced, 1)
atomic.AddInt64(&c.atomic.hits, 1)
<-v.loaded
return v
}
c.mu.RUnlock()
c.mu.Lock()
n := c.mu.nodes[key]
switch {
case n == nil:
// Slow-path miss of a non-existent node.
n = &tableCacheNode{
meta: meta,
ptype: tableCacheNodeCold,
}
c.addNode(n, dbOpts)
c.mu.sizeCold++
case n.value != nil:
// Slow-path hit of a hot or cold node.
//
// The caller is responsible for decrementing the refCount.
v := n.value
atomic.AddInt32(&v.refCount, 1)
atomic.StoreInt32(&n.referenced, 1)
atomic.AddInt64(&c.atomic.hits, 1)
c.mu.Unlock()
<-v.loaded
return v
default:
// Slow-path miss of a test node.
c.unlinkNode(n)
c.mu.coldTarget++
if c.mu.coldTarget > c.size {
c.mu.coldTarget = c.size
}
atomic.StoreInt32(&n.referenced, 0)
n.ptype = tableCacheNodeHot
c.addNode(n, dbOpts)
c.mu.sizeHot++
}
atomic.AddInt64(&c.atomic.misses, 1)
v := &tableCacheValue{
loaded: make(chan struct{}),
refCount: 2,
}
// Cache the closure invoked when an iterator is closed. This avoids an
// allocation on every call to newIters.
v.closeHook = func(i sstable.Iterator) error {
if invariants.RaceEnabled {
c.mu.Lock()
delete(c.mu.iters, i)
c.mu.Unlock()
}
c.unrefValue(v)
atomic.AddInt32(&c.atomic.iterCount, -1)
atomic.AddInt32(dbOpts.atomic.iterCount, -1)
return nil
}
n.value = v
c.mu.Unlock()
// Note adding to the cache lists must complete before we begin loading the
// table as a failure during load will result in the node being unlinked.
pprof.Do(context.Background(), tableCacheLabels, func(context.Context) {
v.load(meta, c, dbOpts)
})
return v
}
func (c *tableCacheShard) addNode(n *tableCacheNode, dbOpts *tableCacheOpts) {
c.evictNodes()
n.cacheID = dbOpts.cacheID
key := tableCacheKey{n.cacheID, n.meta.FileNum}
c.mu.nodes[key] = n
n.links.next = n
n.links.prev = n
if c.mu.handHot == nil {
// First element.
c.mu.handHot = n
c.mu.handCold = n
c.mu.handTest = n
} else {
c.mu.handHot.link(n)
}
if c.mu.handCold == c.mu.handHot {
c.mu.handCold = c.mu.handCold.prev()
}
}
func (c *tableCacheShard) evictNodes() {
for c.size <= c.mu.sizeHot+c.mu.sizeCold && c.mu.handCold != nil {
c.runHandCold()
}
}
func (c *tableCacheShard) runHandCold() {
n := c.mu.handCold
if n.ptype == tableCacheNodeCold {
if atomic.LoadInt32(&n.referenced) == 1 {
atomic.StoreInt32(&n.referenced, 0)
n.ptype = tableCacheNodeHot
c.mu.sizeCold--
c.mu.sizeHot++
} else {
c.clearNode(n)
n.ptype = tableCacheNodeTest
c.mu.sizeCold--
c.mu.sizeTest++
for c.size < c.mu.sizeTest && c.mu.handTest != nil {
c.runHandTest()
}
}
}
c.mu.handCold = c.mu.handCold.next()
for c.size-c.mu.coldTarget <= c.mu.sizeHot && c.mu.handHot != nil {
c.runHandHot()
}
}
func (c *tableCacheShard) runHandHot() {
if c.mu.handHot == c.mu.handTest && c.mu.handTest != nil {
c.runHandTest()
if c.mu.handHot == nil {
return
}
}
n := c.mu.handHot
if n.ptype == tableCacheNodeHot {
if atomic.LoadInt32(&n.referenced) == 1 {
atomic.StoreInt32(&n.referenced, 0)
} else {
n.ptype = tableCacheNodeCold
c.mu.sizeHot--
c.mu.sizeCold++
}
}
c.mu.handHot = c.mu.handHot.next()
}
func (c *tableCacheShard) runHandTest() {
if c.mu.sizeCold > 0 && c.mu.handTest == c.mu.handCold && c.mu.handCold != nil {
c.runHandCold()
if c.mu.handTest == nil {
return
}
}
n := c.mu.handTest
if n.ptype == tableCacheNodeTest {
c.mu.coldTarget--
if c.mu.coldTarget < 0 {
c.mu.coldTarget = 0
}
c.unlinkNode(n)
c.clearNode(n)
}
c.mu.handTest = c.mu.handTest.next()
}
func (c *tableCacheShard) evict(fileNum FileNum, dbOpts *tableCacheOpts, allowLeak bool) {
c.mu.Lock()
key := tableCacheKey{dbOpts.cacheID, fileNum}
n := c.mu.nodes[key]
var v *tableCacheValue
if n != nil {
// NB: This is equivalent to tableCacheShard.releaseNode(), but we perform
// the tableCacheNode.release() call synchronously below to ensure the
// sstable file descriptor is closed before returning. Note that
// tableCacheShard.releasing needs to be incremented while holding
// tableCacheShard.mu in order to avoid a race with Close()
c.unlinkNode(n)
v = n.value
if v != nil {
if !allowLeak {
if t := atomic.AddInt32(&v.refCount, -1); t != 0 {
dbOpts.logger.Fatalf("sstable %s: refcount is not zero: %d\n%s", fileNum, t, debug.Stack())
}
}
c.releasing.Add(1)
}
}
c.mu.Unlock()
if v != nil {
v.release(c)
}
dbOpts.opts.Cache.EvictFile(dbOpts.cacheID, fileNum)
}
// removeDB evicts any nodes which have a reference to the DB
// associated with dbOpts.cacheID. Make sure that there will
// be no more accesses to the files associated with the DB.
func (c *tableCacheShard) removeDB(dbOpts *tableCacheOpts) {
var fileNums []base.FileNum
c.mu.RLock()
// Collect the fileNums which need to be cleaned.
var firstNode *tableCacheNode
node := c.mu.handHot
for node != firstNode {
if firstNode == nil {
firstNode = node
}
if node.cacheID == dbOpts.cacheID {
fileNums = append(fileNums, node.meta.FileNum)
}
node = node.next()
}
c.mu.RUnlock()
// Evict all the nodes associated with the DB.
// This should synchronously close all the files
// associated with the DB.
for _, fNum := range fileNums {
c.evict(fNum, dbOpts, true)
}
}
func (c *tableCacheShard) Close() error {
c.mu.Lock()
defer c.mu.Unlock()
// Check for leaked iterators. Note that we'll still perform cleanup below in
// the case that there are leaked iterators.
var err error
if v := atomic.LoadInt32(&c.atomic.iterCount); v > 0 {
if !invariants.RaceEnabled {
err = errors.Errorf("leaked iterators: %d", errors.Safe(v))
} else {
var buf bytes.Buffer
for _, stack := range c.mu.iters {
fmt.Fprintf(&buf, "%s\n", stack)
}
err = errors.Errorf("leaked iterators: %d\n%s", errors.Safe(v), buf.String())
}
}
for c.mu.handHot != nil {
n := c.mu.handHot
if n.value != nil {
if atomic.AddInt32(&n.value.refCount, -1) == 0 {
c.releasing.Add(1)
c.releasingCh <- n.value
}
}
c.unlinkNode(n)
}
c.mu.nodes = nil
c.mu.handHot = nil
c.mu.handCold = nil
c.mu.handTest = nil
// Only shutdown the releasing goroutine if there were no leaked
// iterators. If there were leaked iterators, we leave the goroutine running
// and the releasingCh open so that a subsequent iterator close can
// complete. This behavior is used by iterator leak tests. Leaking the
// goroutine for these tests is less bad not closing the iterator which
// triggers other warnings about block cache handles not being released.
if err != nil {
c.releasing.Wait()
return err
}
close(c.releasingCh)
c.releasing.Wait()
c.releaseLoopExit.Wait()
return err
}
type tableCacheValue struct {
closeHook func(i sstable.Iterator) error
reader *sstable.Reader
filename string
err error
loaded chan struct{}
// Reference count for the value. The reader is closed when the reference
// count drops to zero.
refCount int32
}
func (v *tableCacheValue) load(meta *fileMetadata, c *tableCacheShard, dbOpts *tableCacheOpts) {
// Try opening the fileTypeTable first.
var f vfs.File
v.filename = base.MakeFilepath(dbOpts.fs, dbOpts.dirname, fileTypeTable, meta.FileNum)
f, v.err = dbOpts.fs.Open(v.filename, vfs.RandomReadsOption)
if v.err == nil {
cacheOpts := private.SSTableCacheOpts(dbOpts.cacheID, meta.FileNum).(sstable.ReaderOption)
reopenOpt := sstable.FileReopenOpt{FS: dbOpts.fs, Filename: v.filename}
v.reader, v.err = sstable.NewReader(f, dbOpts.opts, cacheOpts, dbOpts.filterMetrics, reopenOpt)
}
if v.err == nil {
if meta.SmallestSeqNum == meta.LargestSeqNum {
v.reader.Properties.GlobalSeqNum = meta.LargestSeqNum
}
}
if v.err != nil {
c.mu.Lock()
defer c.mu.Unlock()
// Lookup the node in the cache again as it might have already been
// removed.
key := tableCacheKey{dbOpts.cacheID, meta.FileNum}
n := c.mu.nodes[key]
if n != nil && n.value == v {
c.releaseNode(n)
}
}
close(v.loaded)
}
func (v *tableCacheValue) release(c *tableCacheShard) {
<-v.loaded
// Nothing to be done about an error at this point. Close the reader if it is
// open.
if v.reader != nil {
_ = v.reader.Close()
}
c.releasing.Done()
}
type tableCacheNodeType int8
const (
tableCacheNodeTest tableCacheNodeType = iota
tableCacheNodeCold
tableCacheNodeHot
)
func (p tableCacheNodeType) String() string {
switch p {
case tableCacheNodeTest:
return "test"
case tableCacheNodeCold:
return "cold"
case tableCacheNodeHot:
return "hot"
}
return "unknown"
}
type tableCacheNode struct {
meta *fileMetadata
value *tableCacheValue
links struct {
next *tableCacheNode
prev *tableCacheNode
}
ptype tableCacheNodeType
// referenced is atomically set to indicate that this entry has been accessed
// since the last time one of the clock hands swept it.
referenced int32
// Storing the cache id associated with the DB instance here
// avoids the need to thread the dbOpts struct through many functions.
cacheID uint64
}
func (n *tableCacheNode) next() *tableCacheNode {
if n == nil {
return nil
}
return n.links.next
}
func (n *tableCacheNode) prev() *tableCacheNode {
if n == nil {
return nil
}
return n.links.prev
}
func (n *tableCacheNode) link(s *tableCacheNode) {
s.links.prev = n.links.prev
s.links.prev.links.next = s
s.links.next = n
s.links.next.links.prev = s
}
func (n *tableCacheNode) unlink() *tableCacheNode {
next := n.links.next
n.links.prev.links.next = n.links.next
n.links.next.links.prev = n.links.prev
n.links.prev = n
n.links.next = n
return next
}