-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path63.unique-paths-ii.go
93 lines (84 loc) · 1.95 KB
/
63.unique-paths-ii.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/*
* @lc app=leetcode id=63 lang=golang
*
* [63] Unique Paths II
*
* https://leetcode.com/problems/unique-paths-ii/description/
*
* algorithms
* Medium (34.60%)
* Likes: 1925
* Dislikes: 250
* Total Accepted: 310.7K
* Total Submissions: 896.3K
* Testcase Example: '[[0,0,0],[0,1,0],[0,0,0]]'
*
* A robot is located at the top-left corner of a m x n grid (marked 'Start' in
* the diagram below).
*
* The robot can only move either down or right at any point in time. The robot
* is trying to reach the bottom-right corner of the grid (marked 'Finish' in
* the diagram below).
*
* Now consider if some obstacles are added to the grids. How many unique paths
* would there be?
*
*
*
* An obstacle and empty space is marked as 1 and 0 respectively in the grid.
*
* Note: m and n will be at most 100.
*
* Example 1:
*
*
* Input:
* [
* [0,0,0],
* [0,1,0],
* [0,0,0]
* ]
* Output: 2
* Explanation:
* There is one obstacle in the middle of the 3x3 grid above.
* There are two ways to reach the bottom-right corner:
* 1. Right -> Right -> Down -> Down
* 2. Down -> Down -> Right -> Right
*
*
*/
// @lc code=start
func uniquePathsWithObstacles(obstacleGrid [][]int) int {
return uniquePathsWithObstacles1(obstacleGrid)
}
func uniquePathsWithObstacles1(obstacleGrid [][]int) int {
if len(obstacleGrid) == 0 || len(obstacleGrid[0]) == 0 {
return 0
}
if obstacleGrid[0][0] == 1 {
return 0
}
row, col := len(obstacleGrid), len(obstacleGrid[0])
dp := make([][]int, row)
for i := 0; i < row; i++ {
dp[i] = make([]int, col)
}
// set first column
for i := 0; i < row && obstacleGrid[i][0] == 0; i++ {
dp[i][0] = 1
}
// set first row
for i := 0; i < col && obstacleGrid[0][i] == 0; i++ {
dp[0][i] = 1
}
// dp: dp[i][j] = dp[i-1][j] + dp[i][j-1]
for i := 1; i < row; i++ {
for j := 1; j < col; j++ {
if obstacleGrid[i][j] == 0 {
dp[i][j] = dp[i-1][j] + dp[i][j-1]
}
}
}
return dp[row-1][col-1]
}
// @lc code=end