forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBalanceGroupSat.cs
208 lines (176 loc) · 7.26 KB
/
BalanceGroupSat.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
using System;
using System.Collections.Generic;
using System.Linq;
using Google.OrTools.Sat;
/// <summary>
/// We are trying to group items in equal sized groups.
/// Each item has a color and a value. We want the sum of values of each group
/// to be as close to the average as possible. Furthermore, if one color is an a
/// group, at least k items with this color must be in that group.
/// </summary>
public class BalanceGroupSat
{
static void Main(string[] args)
{
int numberGroups = 10;
int numberItems = 100;
int numberColors = 3;
int minItemsOfSameColorPerGroup = 4;
var allGroups = Enumerable.Range(0, numberGroups).ToArray();
var allItems = Enumerable.Range(0, numberItems).ToArray();
var allColors = Enumerable.Range(0, numberColors).ToArray();
var values = allItems.Select(i => 1 + i + (i * i / 200)).ToArray();
var colors = allItems.Select(i => i % numberColors).ToArray();
var sumOfValues = values.Sum();
var averageSumPerGroup = sumOfValues / numberGroups;
var numItemsPerGroup = numberItems / numberGroups;
var itemsPerColor = new Dictionary<int, List<int>>();
foreach (var color in allColors)
{
itemsPerColor[color] = new List<int>();
foreach (var item in allItems)
{
if (colors[item] == color)
itemsPerColor[color].Add(item);
}
}
Console.WriteLine($"Model has {numberItems}, {numberGroups} groups and {numberColors} colors");
Console.WriteLine($" Average sum per group = {averageSumPerGroup}");
var model = new CpModel();
var itemInGroup = new BoolVar[numberItems, numberGroups];
foreach (var item in allItems)
{
foreach (var @group in allGroups)
{
itemInGroup[item, @group] = model.NewBoolVar($"item {item} in group {@group}");
}
}
// Each group must have the same size.
foreach (var @group in allGroups)
{
var itemsInGroup = allItems.Select(x => itemInGroup[x, @group]).ToArray();
model.AddLinearConstraint(LinearExpr.Sum(itemsInGroup), numItemsPerGroup, numItemsPerGroup);
}
// # One item must belong to exactly one group.
foreach (var item in allItems)
{
var groupsForItem = allGroups.Select(x => itemInGroup[item, x]).ToArray();
model.Add(LinearExpr.Sum(groupsForItem) == 1);
}
// The deviation of the sum of each items in a group against the average.
var e = model.NewIntVar(0, 550, "epsilon");
// Constrain the sum of values in one group around the average sum per
// group.
foreach (var @group in allGroups)
{
var itemValues = allItems.Select(x => itemInGroup[x, @group]).ToArray();
var sum = LinearExpr.WeightedSum(itemValues, values);
model.Add(sum <= averageSumPerGroup + e);
model.Add(sum >= averageSumPerGroup - e);
}
// colorInGroup variables.
var colorInGroup = new BoolVar[numberColors, numberGroups];
foreach (var @group in allGroups)
{
foreach (var color in allColors)
{
colorInGroup[color, @group] = model.NewBoolVar($"color {color} is in group {@group}");
}
}
// Item is in a group implies its color is in that group.
foreach (var item in allItems)
{
foreach (var @group in allGroups)
{
model.AddImplication(itemInGroup[item, @group], colorInGroup[colors[item], @group]);
}
}
// If a color is in a group, it must contains at least
// min_items_of_same_color_per_group items from that color.
foreach (var color in allColors)
{
foreach (var @group in allGroups)
{
var literal = colorInGroup[color, @group];
var items = itemsPerColor[color].Select(x => itemInGroup[x, @group]).ToArray();
model.Add(LinearExpr.Sum(items) >= minItemsOfSameColorPerGroup).OnlyEnforceIf(literal);
}
}
// Compute the maximum number of colors in a group.
int maxColor = numItemsPerGroup / minItemsOfSameColorPerGroup;
// Redundant constraint: The problem does not solve in reasonable time
// without it.
if (maxColor < numberColors)
{
foreach (var @group in allGroups)
{
var all = allColors.Select(x => colorInGroup[x, @group]).ToArray();
model.Add(LinearExpr.Sum(all) <= maxColor);
}
}
// Minimize epsilon
model.Minimize(e);
var solver = new CpSolver();
var solutionPrinter = new SolutionPrinter(values, colors, allGroups, allItems, itemInGroup);
var status = solver.Solve(model, solutionPrinter);
}
public class SolutionPrinter : CpSolverSolutionCallback
{
private int[] _values;
private int[] _colors;
private int[] _allGroups;
private int[] _allItems;
private BoolVar[,] _itemInGroup;
private int _solutionCount;
public SolutionPrinter(int[] values, int[] colors, int[] allGroups, int[] allItems, BoolVar[,] itemInGroup)
{
this._values = values;
this._colors = colors;
this._allGroups = allGroups;
this._allItems = allItems;
this._itemInGroup = itemInGroup;
}
public override void OnSolutionCallback()
{
Console.WriteLine($"Solution {_solutionCount}");
_solutionCount++;
Console.WriteLine($" objective value = {this.ObjectiveValue()}");
Dictionary<int, List<int>> groups = new Dictionary<int, List<int>>();
int[] sum = new int[_allGroups.Length];
foreach (var @group in _allGroups)
{
groups[@group] = new List<int>();
foreach (var item in _allItems)
{
if (BooleanValue(_itemInGroup[item, @group]))
{
groups[@group].Add(item);
sum[@group] += _values[item];
}
}
}
foreach (var g in _allGroups)
{
var group = groups[g];
Console.Write($"Group {g}: sum = {sum[g]} [");
foreach (var item in group)
{
Console.Write($"({item}, {_values[item]}, {_colors[item]})");
}
Console.WriteLine("]");
}
}
}
}