forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlp_data_utils.cc
193 lines (165 loc) · 7.7 KB
/
lp_data_utils.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/lp_data/lp_data_utils.h"
#include "absl/log/check.h"
#include "ortools/glop/parameters.pb.h"
#include "ortools/lp_data/lp_data.h"
#include "ortools/lp_data/lp_types.h"
#include "ortools/lp_data/matrix_scaler.h"
#include "ortools/lp_data/scattered_vector.h"
#include "ortools/lp_data/sparse_column.h"
namespace operations_research {
namespace glop {
void ComputeSlackVariablesValues(const LinearProgram& linear_program,
DenseRow* values) {
DCHECK(values);
DCHECK_EQ(linear_program.num_variables(), values->size());
// If there are no slack variable, we can give up.
if (linear_program.GetFirstSlackVariable() == kInvalidCol) return;
const auto& transposed_matrix = linear_program.GetTransposeSparseMatrix();
for (RowIndex row(0); row < linear_program.num_constraints(); row++) {
const ColIndex slack_variable = linear_program.GetSlackVariable(row);
if (slack_variable == kInvalidCol) continue;
DCHECK_EQ(0.0, linear_program.constraint_lower_bounds()[row]);
DCHECK_EQ(0.0, linear_program.constraint_upper_bounds()[row]);
const RowIndex transposed_slack = ColToRowIndex(slack_variable);
Fractional activation = 0.0;
// Row in the initial matrix (column in the transposed).
const SparseColumn& sparse_row =
transposed_matrix.column(RowToColIndex(row));
for (const auto& entry : sparse_row) {
if (transposed_slack == entry.index()) continue;
activation +=
(*values)[RowToColIndex(entry.index())] * entry.coefficient();
}
(*values)[slack_variable] = -activation;
}
}
// This is separated from the LinearProgram class because of a cyclic dependency
// when scaling as an LP.
void Scale(LinearProgram* lp, SparseMatrixScaler* scaler) {
// Create GlopParameters proto to get default scaling algorithm.
GlopParameters params;
Scale(lp, scaler, params.scaling_method());
}
// This is separated from LinearProgram class because of a cyclic dependency
// when scaling as an LP.
void Scale(LinearProgram* lp, SparseMatrixScaler* scaler,
GlopParameters::ScalingAlgorithm scaling_method) {
scaler->Init(&lp->matrix_);
scaler->Scale(
scaling_method); // Compute R and C, and replace the matrix A by R.A.C
scaler->ScaleRowVector(false,
&lp->objective_coefficients_); // oc = oc.C
scaler->ScaleRowVector(true,
&lp->variable_upper_bounds_); // cl = cl.C^-1
scaler->ScaleRowVector(true,
&lp->variable_lower_bounds_); // cu = cu.C^-1
scaler->ScaleColumnVector(false, &lp->constraint_upper_bounds_); // rl = R.rl
scaler->ScaleColumnVector(false, &lp->constraint_lower_bounds_); // ru = R.ru
lp->transpose_matrix_is_consistent_ = false;
}
void LpScalingHelper::Scale(LinearProgram* lp) { Scale(GlopParameters(), lp); }
void LpScalingHelper::Scale(const GlopParameters& params, LinearProgram* lp) {
scaler_.Clear();
::operations_research::glop::Scale(lp, &scaler_, params.scaling_method());
bound_scaling_factor_ = 1.0 / lp->ScaleBounds();
objective_scaling_factor_ = 1.0 / lp->ScaleObjective(params.cost_scaling());
}
void LpScalingHelper::Clear() {
scaler_.Clear();
bound_scaling_factor_ = 1.0;
objective_scaling_factor_ = 1.0;
}
Fractional LpScalingHelper::VariableScalingFactor(ColIndex col) const {
// During scaling a col was multiplied by ColScalingFactor() and the variable
// bounds divided by it.
return scaler_.ColUnscalingFactor(col) * bound_scaling_factor_;
}
Fractional LpScalingHelper::ScaleVariableValue(ColIndex col,
Fractional value) const {
return value * scaler_.ColUnscalingFactor(col) * bound_scaling_factor_;
}
Fractional LpScalingHelper::ScaleReducedCost(ColIndex col,
Fractional value) const {
// The reduced cost move like the objective and the col scale.
return value / scaler_.ColUnscalingFactor(col) * objective_scaling_factor_;
}
Fractional LpScalingHelper::ScaleDualValue(RowIndex row,
Fractional value) const {
// The dual value move like the objective and the inverse of the row scale.
return value * (scaler_.RowUnscalingFactor(row) * objective_scaling_factor_);
}
Fractional LpScalingHelper::ScaleConstraintActivity(RowIndex row,
Fractional value) const {
// The activity move with the row_scale and the bound_scaling_factor.
return value / scaler_.RowUnscalingFactor(row) * bound_scaling_factor_;
}
Fractional LpScalingHelper::UnscaleVariableValue(ColIndex col,
Fractional value) const {
// Just the opposite of ScaleVariableValue().
return value / (scaler_.ColUnscalingFactor(col) * bound_scaling_factor_);
}
Fractional LpScalingHelper::UnscaleReducedCost(ColIndex col,
Fractional value) const {
// The reduced cost move like the objective and the col scale.
return value * scaler_.ColUnscalingFactor(col) / objective_scaling_factor_;
}
Fractional LpScalingHelper::UnscaleDualValue(RowIndex row,
Fractional value) const {
// The dual value move like the objective and the inverse of the row scale.
return value / (scaler_.RowUnscalingFactor(row) * objective_scaling_factor_);
}
Fractional LpScalingHelper::UnscaleConstraintActivity(RowIndex row,
Fractional value) const {
// The activity move with the row_scale and the bound_scaling_factor.
return value * scaler_.RowUnscalingFactor(row) / bound_scaling_factor_;
}
void LpScalingHelper::UnscaleUnitRowLeftSolve(
ColIndex basis_col, ScatteredRow* left_inverse) const {
const Fractional global_factor = scaler_.ColUnscalingFactor(basis_col);
// We have left_inverse * [RowScale * B * ColScale] = unit_row.
if (left_inverse->non_zeros.empty()) {
const ColIndex num_rows = left_inverse->values.size();
for (ColIndex col(0); col < num_rows; ++col) {
left_inverse->values[col] /=
scaler_.RowUnscalingFactor(ColToRowIndex(col)) * global_factor;
}
} else {
for (const ColIndex col : left_inverse->non_zeros) {
left_inverse->values[col] /=
scaler_.RowUnscalingFactor(ColToRowIndex(col)) * global_factor;
}
}
}
void LpScalingHelper::UnscaleColumnRightSolve(
const RowToColMapping& basis, ColIndex col,
ScatteredColumn* right_inverse) const {
const Fractional global_factor = scaler_.ColScalingFactor(col);
// [RowScale * B * BColScale] * inverse = RowScale * column * ColScale.
// That is B * (BColScale * inverse) = column * ColScale[col].
if (right_inverse->non_zeros.empty()) {
const RowIndex num_rows = right_inverse->values.size();
for (RowIndex row(0); row < num_rows; ++row) {
right_inverse->values[row] /=
scaler_.ColUnscalingFactor(basis[row]) * global_factor;
}
} else {
for (const RowIndex row : right_inverse->non_zeros) {
right_inverse->values[row] /=
scaler_.ColUnscalingFactor(basis[row]) * global_factor;
}
}
}
} // namespace glop
} // namespace operations_research