forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscattered_vector.h
207 lines (175 loc) · 7.33 KB
/
scattered_vector.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_LP_DATA_SCATTERED_VECTOR_H_
#define OR_TOOLS_LP_DATA_SCATTERED_VECTOR_H_
#include <cstddef>
#include <vector>
#include "absl/log/check.h"
#include "ortools/lp_data/lp_types.h"
namespace operations_research {
namespace glop {
// A class representing an entry of a scattered vector. The i-th nonzero
// element of the vector is assumed to be located at indices[i] and its value is
// coefficients[indices[i]], i.e., coefficients is a dense array.
template <typename IndexType>
class ScatteredVectorEntry {
public:
using Index = IndexType;
Index index() const { return index_[i_.value()]; }
Fractional coefficient() const {
return coefficient_[index_[i_.value()].value()];
}
protected:
ScatteredVectorEntry(const Index* indices, const Fractional* coefficients,
EntryIndex i)
: i_(i), index_(indices), coefficient_(coefficients) {}
EntryIndex i_;
const Index* index_;
const Fractional* coefficient_;
};
// A simple struct that contains a DenseVector and its non-zero indices.
// TODO(user): This should be changed from struct to class.
template <typename Index,
typename Iterator = VectorIterator<ScatteredVectorEntry<Index>>>
struct ScatteredVector {
StrictITIVector<Index, Fractional> values;
// This can be left empty in which case we just have the dense representation
// above. Otherwise, it should always be a superset of the actual non-zeros.
bool non_zeros_are_sorted = false;
std::vector<Index> non_zeros;
// Temporary vector used in some sparse computation on the ScatteredVector.
// True indicates a possible non-zero value. Note that its state is not always
// consistent.
StrictITIVector<Index, bool> is_non_zero;
// In many cases there is a choice between treating the ScatteredVector as
// dense or as sparse. By default, dense algorithms are used when the
// proportion of non-zero entries is greater than
// kDefaultRatioForUsingDenseIteration.
//
// TODO(user): The constant should depend on what algorithm is used. Clearing
// a dense vector is a lot more efficient than doing more complex stuff. Clean
// this up by extracting all the currently used constants in one place with
// meaningful names.
constexpr static const double kDefaultRatioForUsingDenseIteration = 0.8;
Fractional operator[](Index index) const { return values[index]; }
Fractional& operator[](Index index) { return values[index]; }
// The iterator syntax for (auto entry : v) where v is a ScatteredVector only
// works when non_zeros is populated (i.e., when the vector is treated as
// sparse).
Iterator begin() const {
DCHECK(!non_zeros.empty() || IsAllZero(values));
return Iterator(this->non_zeros.data(), this->values.data(), EntryIndex(0));
}
Iterator end() const {
return Iterator(this->non_zeros.data(), this->values.data(),
EntryIndex(non_zeros.size()));
}
// Add the given value to the vector at position index. This interface
// encapsulates usage of the "is_non_zero" array, which should not be
// explicitly referenced outside of this struct.
void Add(Index index, Fractional value) {
values[index] += value;
if (!is_non_zero[index] && value != 0.0) {
is_non_zero[index] = true;
non_zeros.push_back(index);
non_zeros_are_sorted = false;
}
}
// Sorting the non-zeros is not always needed, but it allows us to have
// exactly the same behavior while using a sparse iteration or a dense one. So
// we always do it after a Solve().
void SortNonZerosIfNeeded() {
if (!non_zeros_are_sorted) {
std::sort(non_zeros.begin(), non_zeros.end());
non_zeros_are_sorted = true;
}
}
// Returns true if it is more advantageous to use a dense iteration rather
// than using the non-zeros positions.
bool ShouldUseDenseIteration(
double ratio_for_using_dense_representation) const {
if (non_zeros.empty()) return true;
return static_cast<double>(non_zeros.size()) >
ratio_for_using_dense_representation *
static_cast<double>(values.size().value());
}
bool ShouldUseDenseIteration() const {
return ShouldUseDenseIteration(kDefaultRatioForUsingDenseIteration);
}
// Efficiently clears the is_non_zero vector.
void ClearSparseMask() {
if (ShouldUseDenseIteration()) {
is_non_zero.assign(values.size(), false);
} else {
is_non_zero.resize(values.size(), false);
for (const Index index : non_zeros) {
is_non_zero[index] = false;
}
DCHECK(IsAllFalse(is_non_zero));
}
}
// Update the is_non_zero vector to be consistent with the non_zeros vector.
void RepopulateSparseMask() {
ClearSparseMask();
for (const Index index : non_zeros) is_non_zero[index] = true;
}
// If the proportion of non-zero entries is too large, clears the vector of
// non-zeros.
void ClearNonZerosIfTooDense(double ratio_for_using_dense_representation) {
if (ShouldUseDenseIteration(ratio_for_using_dense_representation)) {
ClearSparseMask();
non_zeros.clear();
}
}
void ClearNonZerosIfTooDense() {
ClearNonZerosIfTooDense(kDefaultRatioForUsingDenseIteration);
}
// Returns an overestimate of the number of non-zeros. This is actually
// exact for sparse vector, or the full size otherwise.
size_t NumNonZerosEstimate() const {
return non_zeros.empty() ? values.size().value() : non_zeros.size();
}
};
// Specializations used in the code.
class ScatteredColumnEntry : public ScatteredVectorEntry<RowIndex> {
public:
// Returns the row of the current entry.
RowIndex row() const { return index(); }
protected:
ScatteredColumnEntry(const RowIndex* indices, const Fractional* coefficients,
EntryIndex i)
: ScatteredVectorEntry<RowIndex>(indices, coefficients, i) {}
};
class ScatteredRowEntry : public ScatteredVectorEntry<ColIndex> {
public:
// Returns the column of the current entry.
ColIndex column() const { return index(); }
protected:
ScatteredRowEntry(const ColIndex* indices, const Fractional* coefficients,
EntryIndex i)
: ScatteredVectorEntry<ColIndex>(indices, coefficients, i) {}
};
using ScatteredColumnIterator = VectorIterator<ScatteredColumnEntry>;
using ScatteredRowIterator = VectorIterator<ScatteredRowEntry>;
struct ScatteredColumn
: public ScatteredVector<RowIndex, ScatteredColumnIterator> {};
struct ScatteredRow : public ScatteredVector<ColIndex, ScatteredRowIterator> {};
inline const ScatteredRow& TransposedView(const ScatteredColumn& c) {
return reinterpret_cast<const ScatteredRow&>(c);
}
inline const ScatteredColumn& TransposedView(const ScatteredRow& r) {
return reinterpret_cast<const ScatteredColumn&>(r);
}
} // namespace glop
} // namespace operations_research
#endif // OR_TOOLS_LP_DATA_SCATTERED_VECTOR_H_