-
Notifications
You must be signed in to change notification settings - Fork 260
/
Copy pathtest.py
122 lines (93 loc) · 4.17 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import cv2
import time
import argparse
import numpy as np
from matplotlib import pyplot as plt
import config as cfg
import tensorflow as tf
from common import polygons_to_mask
class TextRecognition(object):
"""
AttentionOCR with tensorflow pb model.
"""
def __init__(self, pb_file, seq_len):
self.pb_file = pb_file
self.seq_len = seq_len
self.init_model()
def init_model(self):
self.graph = tf.Graph()
with self.graph.as_default():
with tf.gfile.FastGFile(self.pb_file, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
self.sess = tf.Session(graph=self.graph)
self.img_ph = self.sess.graph.get_tensor_by_name('image:0')
self.label_ph = self.sess.graph.get_tensor_by_name('label:0')
self.is_training = self.sess.graph.get_tensor_by_name('is_training:0')
self.dropout = self.sess.graph.get_tensor_by_name('dropout_keep_prob:0')
self.preds = self.sess.graph.get_tensor_by_name('sequence_preds:0')
self.probs = self.sess.graph.get_tensor_by_name('sequence_probs:0')
def predict(self, image, label_dict, EOS='EOS'):
results = []
probabilities = []
pred_sentences, pred_probs = self.sess.run([self.preds, self.probs], \
feed_dict={self.is_training: False, self.dropout: 1.0, self.img_ph: image, self.label_ph: np.ones((1,self.seq_len), np.int32)})
for char in pred_sentences[0]:
if label_dict[char] == EOS:
break
results.append(label_dict[char])
probabilities = pred_probs[0][:min(len(results)+1,self.seq_len)]
return results, probabilities
def preprocess(image, points, size=cfg.image_size):
"""
Preprocess for test.
Args:
image: test image
points: text polygon
size: test image size
"""
height, width = image.shape[:2]
mask = polygons_to_mask([np.asarray(points, np.float32)], height, width)
x, y, w, h = cv2.boundingRect(mask)
mask = np.expand_dims(np.float32(mask), axis=-1)
image = image * mask
image = image[y:y+h, x:x+w,:]
new_height, new_width = (size, int(w*size/h)) if h>w else (int(h*size/w), size)
image = cv2.resize(image, (new_width, new_height))
if new_height > new_width:
padding_top, padding_down = 0, 0
padding_left = (size - new_width)//2
padding_right = size - padding_left - new_width
else:
padding_left, padding_right = 0, 0
padding_top = (size - new_height)//2
padding_down = size - padding_top - new_height
image = cv2.copyMakeBorder(image, padding_top, padding_down, padding_left, padding_right, borderType=cv2.BORDER_CONSTANT, value=[0,0,0])
image = image/255.
return image
def test(args):
model = TextRecognition(args.pb_path, cfg.seq_len+1)
for filename in os.listdir(args.img_folder):
img_path = os.path.join(args.img_folder, filename)
image = cv2.imread(img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
height, width = image.shape[:2]
points = [[0,0], [width-1,0], [width-1,height-1], [0,height-1]]
image = preprocess(image, points, cfg.image_size)
image = np.expand_dims(image, 0)
before = time.time()
preds, probs = model.predict(image, cfg.label_dict)
after = time.time()
print(preds, probs)
plt.imshow(image[0,:,:,:])
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='OCR')
parser.add_argument('--pb_path', type=str, help='path to tensorflow pb model', default='./checkpoint/text_recognition_5435.pb')
parser.add_argument('--img_folder', type=str, help='path to image folder', default='/opt/data/nfs/zhangjinjin/data/text/art/test_part1_task2_images')
args = parser.parse_args()
test(args)