-
Notifications
You must be signed in to change notification settings - Fork 260
/
Copy pathtrain.py
83 lines (58 loc) · 2.59 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os, sys
import numpy as np
import tensorflow as tf
import time
import argparse
import config as cfg
from model.tensorpack_model import *
from text_dataflow import get_roidb, get_batch_train_dataflow
from tensorpack import *
os.environ["CUDA_VISIBLE_DEVICES"]=','.join([str(i) for i in cfg.gpus])
def train():
roidb = get_roidb(cfg.dataset_name)
train_dataflow = get_batch_train_dataflow(roidb, cfg.batch_size)
logger.set_logger_dir(cfg.summary_path, 'd')
# Compute the training schedule from the number of GPUs ...
warmup_schedule = [(0, cfg.learning_rate/100), (cfg.warmup_steps, cfg.learning_rate)]
# lr_schedule = [(int(cfg.warmup_steps/cfg.steps_per_epoch+0.5), cfg.learning_rate),(cfg.num_epochs-150, cfg.learning_rate/10),(cfg.num_epochs-50, cfg.learning_rate/100)]
# Create callbacks ...
callbacks = [
PeriodicCallback(
ModelSaver(max_to_keep=20, keep_checkpoint_every_n_hours=1),
every_k_epochs=20),
# linear warmup
ScheduledHyperParamSetter(
'learning_rate', warmup_schedule, interp='linear', step_based=True),
# ScheduledHyperParamSetter('learning_rate', lr_schedule),
GPUMemoryTracker(),
HostMemoryTracker(),
ThroughputTracker(samples_per_step=cfg.num_gpus),
EstimatedTimeLeft(median=True),
SessionRunTimeout(60000), # 1 minute timeout
GPUUtilizationTracker()
]
# session_init = SmartInit(cfg.pretrain_path, ignore_mismatch=True)
if cfg.restore_path:
session_init = SmartInit(cfg.restore_path, ignore_mismatch=True)
else:
session_init = SaverRestoreRelaxed(cfg.pretrain_path, ignore=['global_step:0'])# if cfg.pretrain_path else SmartInit(cfg.restore_path, ignore_mismatch=True)
model = AttentionOCR()
traincfg = TrainConfig(
model=model,
data=QueueInput(train_dataflow),
callbacks=callbacks,
steps_per_epoch=cfg.steps_per_epoch,
max_epoch=cfg.num_epochs,
session_init=session_init,
starting_epoch=cfg.starting_epoch
)
trainer = SyncMultiGPUTrainerReplicated(cfg.num_gpus, average=False, mode='nccl')
launch_train_with_config(traincfg, trainer)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='OCR')
parser.add_argument('--mode', type=str, help='train or test', default='train')
args = parser.parse_args()
if args.mode == 'train':
train()