forked from guopengf/3d_ldm_cnh
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlpips_l1.py
271 lines (216 loc) · 10.9 KB
/
lpips_l1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
from __future__ import absolute_import
import torch
import torch.nn as nn
import torch.nn.init as init
from torch.autograd import Variable
import numpy as np
import lpips_pretrained_networks as pn
import torch.nn
import lpips
from lpips import LPIPS as OriginalLPIPS
def spatial_average(in_tens, keepdim=True):
return in_tens.mean([2, 3], keepdim=keepdim)
def upsample(in_tens, out_HW=(64, 64)): # assumes scale factor is same for H and W
in_H, in_W = in_tens.shape[2], in_tens.shape[3]
return nn.Upsample(size=out_HW, mode='bilinear', align_corners=False)(in_tens)
# Learned perceptual metric
class LPIPSL1(nn.Module):
def __init__(self, pretrained=True, net='alex', version='0.1', lpips=True, spatial=False,
pnet_rand=False, pnet_tune=False, use_dropout=True, model_path=None, eval_mode=True, verbose=True):
""" Initializes a perceptual loss torch.nn.Module
Parameters (default listed first)
---------------------------------
lpips : bool
[True] use linear layers on top of base/trunk network
[False] means no linear layers; each layer is averaged together
pretrained : bool
This flag controls the linear layers, which are only in effect when lpips=True above
[True] means linear layers are calibrated with human perceptual judgments
[False] means linear layers are randomly initialized
pnet_rand : bool
[False] means trunk loaded with ImageNet classification weights
[True] means randomly initialized trunk
net : str
['alex','vgg','squeeze'] are the base/trunk networks available
version : str
['v0.1'] is the default and latest
['v0.0'] contained a normalization bug; corresponds to old arxiv v1 (https://arxiv.org/abs/1801.03924v1)
model_path : 'str'
[None] is default and loads the pretrained weights from paper https://arxiv.org/abs/1801.03924v1
The following parameters should only be changed if training the network
eval_mode : bool
[True] is for test mode (default)
[False] is for training mode
pnet_tune
[False] tune the base/trunk network
[True] keep base/trunk frozen
use_dropout : bool
[True] to use dropout when training linear layers
[False] for no dropout when training linear layers
"""
super(LPIPSL1, self).__init__()
if (verbose):
print('Setting up [%s] perceptual loss: trunk [%s], v[%s], spatial [%s]' %
('LPIPS' if lpips else 'baseline', net, version, 'on' if spatial else 'off'))
self.pnet_type = net
self.pnet_tune = pnet_tune
self.pnet_rand = pnet_rand
self.spatial = spatial
self.lpips = lpips # false means baseline of just averaging all layers
self.version = version
self.scaling_layer = ScalingLayer()
if (self.pnet_type in ['vgg', 'vgg16']):
net_type = pn.vgg16
self.chns = [64, 128, 256, 512, 512]
elif (self.pnet_type == 'alex'):
net_type = pn.alexnet
self.chns = [64, 192, 384, 256, 256]
elif (self.pnet_type == 'squeeze'):
net_type = pn.squeezenet
self.chns = [64, 128, 256, 384, 384, 512, 512]
self.L = len(self.chns)
self.net = net_type(pretrained=not self.pnet_rand, requires_grad=self.pnet_tune)
if (lpips):
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
self.lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
if (self.pnet_type == 'squeeze'): # 7 layers for squeezenet
self.lin5 = NetLinLayer(self.chns[5], use_dropout=use_dropout)
self.lin6 = NetLinLayer(self.chns[6], use_dropout=use_dropout)
self.lins += [self.lin5, self.lin6]
self.lins = nn.ModuleList(self.lins)
if (pretrained):
if (model_path is None):
import inspect
import os
model_path = os.path.abspath(
os.path.join(inspect.getfile(OriginalLPIPS.__init__), '..',
'weights/v%s/%s.pth' % (version, net)))
if (verbose):
print('Loading model from: %s' % model_path)
self.load_state_dict(torch.load(model_path, map_location='cpu'), strict=False)
if (eval_mode):
self.eval()
def normalize_tensor(self, in_feat, eps=1e-6):
norm_factor = torch.linalg.vector_norm(in_feat, ord=2, dim=1, keepdim=True)
return in_feat / (norm_factor + eps)
def forward(self, in0, in1, retPerLayer=False, normalize=False):
if normalize: # turn on this flag if input is [0,1] so it can be adjusted to [-1, +1]
in0 = 2 * in0 - 1
in1 = 2 * in1 - 1
# v0.0 - original release had a bug, where input was not scaled
in0_input, in1_input = (self.scaling_layer(in0), self.scaling_layer(in1)) if self.version == '0.1' else (
in0, in1)
outs0, outs1 = self.net.forward(in0_input), self.net.forward(in1_input)
feats0, feats1, diffs = {}, {}, {}
for kk in range(self.L):
# increase eps to 1e-4
feats0[kk], feats1[kk] = self.normalize_tensor(outs0[kk], eps=1e-6), self.normalize_tensor(outs1[kk],
eps=1e-6)
# diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
# change it to L1 diff to prevent nan in amp!
# diffs[kk] = torch.abs(feats0[kk] - feats1[kk])
# use pytorch mse_loss implementation to make it stable in amp
diffs[kk] = torch.nn.functional.mse_loss(feats0[kk], feats1[kk], reduction="none")
if (self.lpips):
if (self.spatial):
res = [upsample(self.lins[kk](diffs[kk]), out_HW=in0.shape[2:]) for kk in range(self.L)]
else:
res = [spatial_average(self.lins[kk](diffs[kk]), keepdim=True) for kk in range(self.L)]
else:
if (self.spatial):
res = [upsample(diffs[kk].sum(dim=1, keepdim=True), out_HW=in0.shape[2:]) for kk in range(self.L)]
else:
res = [spatial_average(diffs[kk].sum(dim=1, keepdim=True), keepdim=True) for kk in range(self.L)]
val = 0
for l in range(self.L):
val += res[l]
if (retPerLayer):
return (val, res)
else:
return val
class ScalingLayer(nn.Module):
def __init__(self):
super(ScalingLayer, self).__init__()
self.register_buffer('shift', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
self.register_buffer('scale', torch.Tensor([.458, .448, .450])[None, :, None, None])
def forward(self, inp):
return (inp - self.shift) / self.scale
class NetLinLayer(nn.Module):
''' A single linear layer which does a 1x1 conv '''
def __init__(self, chn_in, chn_out=1, use_dropout=False):
super(NetLinLayer, self).__init__()
layers = [nn.Dropout(), ] if (use_dropout) else []
layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class Dist2LogitLayer(nn.Module):
''' takes 2 distances, puts through fc layers, spits out value between [0,1] (if use_sigmoid is True) '''
def __init__(self, chn_mid=32, use_sigmoid=True):
super(Dist2LogitLayer, self).__init__()
layers = [nn.Conv2d(5, chn_mid, 1, stride=1, padding=0, bias=True), ]
layers += [nn.LeakyReLU(0.2, True), ]
layers += [nn.Conv2d(chn_mid, chn_mid, 1, stride=1, padding=0, bias=True), ]
layers += [nn.LeakyReLU(0.2, True), ]
layers += [nn.Conv2d(chn_mid, 1, 1, stride=1, padding=0, bias=True), ]
if (use_sigmoid):
layers += [nn.Sigmoid(), ]
self.model = nn.Sequential(*layers)
def forward(self, d0, d1, eps=0.1):
return self.model.forward(torch.cat((d0, d1, d0 - d1, d0 / (d1 + eps), d1 / (d0 + eps)), dim=1))
class BCERankingLoss(nn.Module):
def __init__(self, chn_mid=32):
super(BCERankingLoss, self).__init__()
self.net = Dist2LogitLayer(chn_mid=chn_mid)
# self.parameters = list(self.net.parameters())
self.loss = torch.nn.BCELoss()
def forward(self, d0, d1, judge):
per = (judge + 1.) / 2.
self.logit = self.net.forward(d0, d1)
return self.loss(self.logit, per)
# L2, DSSIM metrics
class FakeNet(nn.Module):
def __init__(self, use_gpu=True, colorspace='Lab'):
super(FakeNet, self).__init__()
self.use_gpu = use_gpu
self.colorspace = colorspace
class L2(FakeNet):
def forward(self, in0, in1, retPerLayer=None):
assert (in0.size()[0] == 1) # currently only supports batchSize 1
if (self.colorspace == 'RGB'):
(N, C, X, Y) = in0.size()
value = torch.mean(torch.mean(torch.mean((in0 - in1) ** 2, dim=1).view(N, 1, X, Y), dim=2).view(N, 1, 1, Y),
dim=3).view(N)
return value
elif (self.colorspace == 'Lab'):
value = lpips.l2(lpips.tensor2np(lpips.tensor2tensorlab(in0.data, to_norm=False)),
lpips.tensor2np(lpips.tensor2tensorlab(in1.data, to_norm=False)), range=100.).astype(
'float')
ret_var = Variable(torch.Tensor((value,)))
if (self.use_gpu):
ret_var = ret_var.cuda()
return ret_var
class DSSIM(FakeNet):
def forward(self, in0, in1, retPerLayer=None):
assert (in0.size()[0] == 1) # currently only supports batchSize 1
if (self.colorspace == 'RGB'):
value = lpips.dssim(1. * lpips.tensor2im(in0.data), 1. * lpips.tensor2im(in1.data), range=255.).astype(
'float')
elif (self.colorspace == 'Lab'):
value = lpips.dssim(lpips.tensor2np(lpips.tensor2tensorlab(in0.data, to_norm=False)),
lpips.tensor2np(lpips.tensor2tensorlab(in1.data, to_norm=False)), range=100.).astype(
'float')
ret_var = Variable(torch.Tensor((value,)))
if (self.use_gpu):
ret_var = ret_var.cuda()
return ret_var
def print_network(net):
num_params = 0
for param in net.parameters():
num_params += param.numel()
print('Network', net)
print('Total number of parameters: %d' % num_params)