Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/350 fix tests #351

Merged
merged 6 commits into from
Jan 27, 2024
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/test-and-verify.yml
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ jobs:

strategy:
matrix:
spark: [ 3.2 ]
spark: [ 3.2, 3.3, 3.4, 3.5 ]
scala: [ 2.12, 2.13 ]

name: Spark ${{ matrix.spark }}, Scala ${{ matrix.scala }}
Expand Down
72 changes: 52 additions & 20 deletions pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,9 @@
<maven.shade.plugin.version>3.2.1</maven.shade.plugin.version>

<!-- Spark -->
<spark-32.version>3.2.1</spark-32.version>
<spark.default.version>3.2.4</spark.default.version>
<avro.default.version>1.10.2</avro.default.version>
<jackson.core.default.version>2.12.3</jackson.core.default.version>

<!-- Cross build properties -->

Expand All @@ -63,13 +65,15 @@
<scala.compat.version>2.12</scala.compat.version>

<!--Platforms-->
<spark.version>${spark-32.version}</spark.version>
<spark.version>${spark.default.version}</spark.version>
<avro.version>${avro.default.version}</avro.version>
<jackson.core.version>${jackson.core.default.version}</jackson.core.version>

<spark.avro.version>${spark.version}</spark.avro.version>
<kafka.spark.version>0-10</kafka.spark.version>
<confluent.version>6.2.1</confluent.version>

<!--Libs-->
<avro.version>1.10.2</avro.version>
<jacoco.version>0.8.10</jacoco.version>

<!--Tests-->
Expand Down Expand Up @@ -119,6 +123,20 @@
</developer>
</developers>

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.apache.avro</groupId>
<artifactId>avro</artifactId>
<version>${avro.version}</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>${jackson.core.version}</version>
</dependency>
</dependencies>
</dependencyManagement>
<dependencies>
<!-- Tests -->
<dependency>
Expand Down Expand Up @@ -159,14 +177,6 @@
<version>${spark.avro.version}</version>
</dependency>

<!-- Avro -->
<dependency>
<groupId>org.apache.avro</groupId>
<artifactId>avro</artifactId>
<version>${avro.version}</version>
<scope>provided</scope>
</dependency>

Comment on lines -162 to -169
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Since the dependency is not declared, where is the Avro coming from? Confluent or Spark?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It's coming from Spark. But I realize that it's basically luck, I didn't think of confluent.

The reason why I removed it is because in principle we should compile against the Avro version that Spark sets, because Avro is packaged with the Spark runtime.

We could just set the Avro version for each Spark version, but we also need to set the version for jackson-core, because Spark does actually override it. E.g. Avro 1.11.2 depends on jackson-core 2.14.2, but Spark 3.5.0 overrides this and uses jackson-core 2.15.2

Another, perhaps radical approach would be to import the pom of spark-parent, and thereby its dependencyManagement section (https://github.com/apache/spark/blob/master/pom.xml#L434-L2857). Then we would be sure that we always use the same dependencies as Spark does. However, unfortunately it's overly intrusive since it defines not only the runtime dependencies, but also test dependencies like scalatest, scalacheck etc.

So for now, I think the better solution is to just define the versions of avro and jackson-core along with the spark version in the respective profiles

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Another, perhaps radical approach would be to import the pom of spark-parent

I did this for spline agent, but we have separated pom for the uber-jar creation there if I remember correctly.

But I agree, this is a good solution.

<!-- Spark Kafka -->
<dependency>
<groupId>org.apache.spark</groupId>
Expand Down Expand Up @@ -362,12 +372,36 @@
<profile>
<id>spark-3.2</id>
<properties>
<spark.version>${spark-32.version}</spark.version>
<avro.version>1.10.2</avro.version>
<confluent.version>6.2.1</confluent.version>
<spark.version>${spark.default.version}</spark.version>
<avro.version>${avro.default.version}</avro.version>
<jackson.core.version>${jackson.core.default.version}</jackson.core.version>
</properties>
</profile>

</profile>
<profile>
<id>spark-3.3</id>
<properties>
<spark.version>3.3.4</spark.version>
<avro.version>1.11.0</avro.version>
<jackson.core.version>2.13.4.2</jackson.core.version>
</properties>
</profile>
<profile>
<id>spark-3.4</id>
<properties>
<spark.version>3.4.2</spark.version>
<avro.version>1.11.1</avro.version>
<jackson.core.version>2.14.2</jackson.core.version>
</properties>
</profile>
<profile>
<id>spark-3.5</id>
<properties>
<spark.version>3.5.0</spark.version>
<avro.version>1.11.2</avro.version>
<jackson.core.version>2.15.2</jackson.core.version>
</properties>
</profile>
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

confluent.version seems to be the same everywhere.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes, I guess we can set it as a constant then. If we want to make it dynamic it in the future, we can always change it

<profile>
<id>uber</id>
<build>
Expand Down Expand Up @@ -563,11 +597,9 @@
<artifactId>jacoco-maven-plugin</artifactId>
<version>${jacoco.version}</version>
<configuration>
<!-- examples of class excluding -->
<!-- excludes>
<exclude>za/co/absa/enceladus/migrations/continuous/EntityVersionMap.class</exclude>
<exclude>za/co/absa/enceladus/rest_api/exceptions/ValidationException.class</exclude>
</excludes -->
<excludes>
<exclude>za/co/absa/abris/examples/**</exclude>
</excludes>
</configuration>
<executions>
<execution>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,13 +16,13 @@

package za.co.absa.abris.examples

import org.apache.spark.sql.catalyst.encoders.RowEncoder
import org.apache.spark.sql.functions.{col, struct}
import org.apache.spark.sql.{DataFrame, Encoder, Row, SparkSession}
import za.co.absa.abris.avro.format.SparkAvroConversions
import za.co.absa.abris.avro.parsing.utils.AvroSchemaUtils
import za.co.absa.abris.config.AbrisConfig
import za.co.absa.abris.examples.data.generation.ComplexRecordsGenerator
import za.co.absa.abris.examples.utils.CompatibleRowEncoder


object ConfluentKafkaAvroWriter {
Expand Down Expand Up @@ -85,6 +85,6 @@ object ConfluentKafkaAvroWriter {
private def getEncoder: Encoder[Row] = {
val avroSchema = AvroSchemaUtils.parse(ComplexRecordsGenerator.usedAvroSchema)
val sparkSchema = SparkAvroConversions.toSqlType(avroSchema)
RowEncoder.apply(sparkSchema)
CompatibleRowEncoder.apply(sparkSchema)
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
/*
* Copyright 2019 ABSA Group Limited
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package za.co.absa.abris.examples.utils

import org.apache.spark.sql.{Encoder, Row}
import org.apache.spark.sql.types.StructType

import scala.util.Try

object CompatibleRowEncoder {
def apply(schema: StructType): Encoder[Row] = {
// Spark < 3.5.0
val rowEncoderTry = Try {
val rowEncoderClass = Class.forName("org.apache.spark.sql.catalyst.encoders.RowEncoder")
val applyMethod = rowEncoderClass.getMethod("apply", classOf[StructType])
applyMethod.invoke(null, schema).asInstanceOf[Encoder[Row]]
}

// Spark >= 3.5.0
rowEncoderTry.orElse(Try {
val encodersClass = Class.forName("org.apache.spark.sql.Encoders")
val rowMethod = encodersClass.getMethod("row", classOf[StructType])
rowMethod.invoke(null, schema).asInstanceOf[Encoder[Row]]
}).getOrElse {
throw new IllegalStateException("Neither RowEncoder.apply nor Encoders.row is available in the Spark version.")
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ class CatalystAvroConversionSpec extends AnyFlatSpec with Matchers with BeforeAn
SchemaManagerFactory.addSRClientInstance(schemaRegistryConfig, mockedSchemaRegistryClient)
}

val bareByteSchema = """{"type": "bytes"}""""
val bareByteSchema = """{"type": "bytes"}"""

it should "convert one type with bare schema to avro an back" in {

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,17 +17,17 @@
package za.co.absa.abris.avro.utils

import org.apache.spark.sql.{Encoder, Row}
import org.apache.spark.sql.catalyst.encoders.RowEncoder
import za.co.absa.abris.avro.format.SparkAvroConversions
import za.co.absa.abris.avro.parsing.utils.AvroSchemaUtils
import za.co.absa.abris.examples.data.generation.ComplexRecordsGenerator
import za.co.absa.abris.examples.utils.CompatibleRowEncoder

class AvroSchemaEncoder {

def getEncoder: Encoder[Row] = {
val avroSchema = AvroSchemaUtils.parse(ComplexRecordsGenerator.usedAvroSchema)
val sparkSchema = SparkAvroConversions.toSqlType(avroSchema)
RowEncoder.apply(sparkSchema)
CompatibleRowEncoder.apply(sparkSchema)
}

}
Loading