Skip to content
/ XNetv2 Public
forked from Yanfeng-Zhou/XNetv2

[BIBM 2024] XNet v2: Fewer Limitations, Better Results and Greater Universality

Notifications You must be signed in to change notification settings

CV-IP/XNetv2

 
 

Repository files navigation

XNet v2: Fewer limitations, Better Results and Greater Universality

This is the official code of XNet v2: Fewer limitations, Better Results and Greater Universality (BIBM 2024).

The corresponding oral video demonstration is here.

Limitations of XNet

  • Performance Degradation with Hardly HF Information

    XNet emphasizes high-frequency (HF) information. When images hardly have HF information, XNet performance is negatively impacted.

  • Underutilization of Raw Image Information

    XNet only uses low-frequency (LF) and HF images as input. Raw images are not involved in training. Although LF and HF information can be fused into complete information in fusion module, the raw image may still contain useful but unappreciated information.

  • Insufficient Fusion

    XNet only uses deep features for fusion. Shallow feature fusion and image-level fusion are also necessary.

XNet v2

  • Overview

    $$L_{total}=L_{sup}+\lambda L_{unsup}$$

    $$L_{sup}=L_{unsup}^M(p_{i}^{M}, y_i)+L_{unsup}^L(p_{i}^{L}, y_i)+L_{unsup}^H(p_{i}^{H}, y_i)$$

    $$L_{unsup} = L_{unsup}^{M,L}(p_{i}^M, p_{i}^{L})+L_{unsup}^{M,H}(p_{i}^M, p_{i}^{H})$$

  • Image-level Fusion

    Different from XNet, after using wavelet transform to generate LF image $I_L$ and HF image $I_H$, we fuse them in different ratios to generate complementary image $x_L$ and $x_H$. $x_L$ and $x_H$ are defined as: $$x_L=I_L+\alpha I_H,$$

    $$x_H=I_H+\beta I_L.$$

    The input of XNet is a special case when $α=β=0$, but our definition is a more general expression. This strategy achieves image-level information fusion. More importantly, it solves the limitation of XNet not working with less HF information. To be specific, when hardly have HF information, i.e., $I_H \approx 0$: $$x_L=I_L+\alpha I_H \approx I_L,$$

    $$x_H=I_H+\beta I_L \approx \beta I_L \approx \beta x^L.$$

    $x^H$ degenerates into a perturbation form of $x^L$, which can be regarded as consistent learning of two different LF perturbations. It effectively overcomes the failure to extract features when HF information is scarce.

  • Feature-Level Fusion

Quantitative Comparison

  • Semi-Supervision

  • Fully-Supervision

Qualitative Comparison

Requirements

albumentations==1.2.1  
MedPy==0.4.0  
numpy==1.21.5  
opencv_python_headless==4.5.4.60  
Pillow==9.4.0  
PyWavelets==1.3.0  
scikit_learn==1.2.1  
scipy==1.7.3  
SimpleITK==2.2.1  
torch==1.8.0+cu111  
torchio==0.18.84  
torchvision==0.9.0+cu111  
visdom==0.1.8.9

Usage

Data preparation Build your own dataset and its directory tree should be look like this:

dataset
├── train_sup_100
    ├── image
        ├── 1.tif
        ├── 2.tif
        └── ...
    └── mask
        ├── 1.tif
        ├── 2.tif
        └── ...
├── train_sup_20
    ├── image
    └── mask
├── train_unsup_80
    ├── image
└── val
    ├── image
    └── mask

Configure dataset parameters

Add configuration in /config/dataset_config/dataset_config.py The configuration should be as follows:

# 2D Dataset
'CREMI':
	{
		'PATH_DATASET': '.../XNetv2/dataset/CREMI',
		'PATH_TRAINED_MODEL': '.../XNetv2/checkpoints',
		'PATH_SEG_RESULT': '.../XNetv2/seg_pred',
		'IN_CHANNELS': 1,
		'NUM_CLASSES': 2,
		'MEAN': [0.503902],
		'STD': [0.110739],
		'INPUT_SIZE': (128, 128),
		'PALETTE': list(np.array([
			[255, 255, 255],
			[0, 0, 0],
		]).flatten())
	},

# 3D Dataset
'LiTS':
	{
		'PATH_DATASET': '.../XNetv2/dataset/LiTS',
		'PATH_TRAINED_MODEL': '.../XNetv2/checkpoints',
		'PATH_SEG_RESULT': '.../XNetv2/seg_pred',
		'IN_CHANNELS': 1,
		'NUM_CLASSES': 3,
		'NORMALIZE': tio.ZNormalization.mean,
		'PATCH_SIZE': (112, 112, 32),
		'PATCH_OVERLAP': (56, 56, 16),
		'NUM_SAMPLE_TRAIN': 8,
		'NUM_SAMPLE_VAL': 12,
		'QUEUE_LENGTH': 48
	},

Supervised training

python -m torch.distributed.launch --nproc_per_node=4 train_sup_XNetv2.py

Semi-supervised training

python -m torch.distributed.launch --nproc_per_node=4 train_semi_XNetv2.py

Testing

python -m torch.distributed.launch --nproc_per_node=4 test.py

Citation

If our work is useful for your research, please cite our paper:

About

[BIBM 2024] XNet v2: Fewer Limitations, Better Results and Greater Universality

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%