Skip to content

Commit

Permalink
Add new "one-to-one" mode for modelling tides at multiple locations w…
Browse files Browse the repository at this point in the history
…ith unique timesteps (#1142)

* Add analysis mode to model_tides, update tests

* Clarify which models need special definition file

* In progress update of notebook

* Update notebook, fix plot
  • Loading branch information
robbibt authored Sep 21, 2023
1 parent dc6fb84 commit b26dc86
Show file tree
Hide file tree
Showing 3 changed files with 731 additions and 337 deletions.
744 changes: 482 additions & 262 deletions How_to_guides/Tidal_modelling.ipynb

Large diffs are not rendered by default.

98 changes: 95 additions & 3 deletions Tests/dea_tools/test_coastal.py
Original file line number Diff line number Diff line change
Expand Up @@ -131,7 +131,8 @@ def test_model_tides(measured_tides_ds, x, y, crs, method):

# Test that modelled tides contain correct headings and have same
# number of timesteps
assert modelled_tides_df.columns.tolist() == ["x", "y", "tide_model", "tide_m"]
assert modelled_tides_df.index.names == ["time", "x", "y"]
assert modelled_tides_df.columns.tolist() == ["tide_model", "tide_m"]
assert len(modelled_tides_df.index) == len(measured_tides_ds.time)

# Test that modelled tides meet expected accuracy
Expand Down Expand Up @@ -169,7 +170,8 @@ def test_model_tides_multiplemodels(measured_tides_ds, models, output_format):

if output_format == "long":
# Verify output has correct columns
assert modelled_tides_df.columns.tolist() == ["x", "y", "tide_model", "tide_m"]
assert modelled_tides_df.index.names == ["time", "x", "y"]
assert modelled_tides_df.columns.tolist() == ["tide_model", "tide_m"]

# Verify tide model column contains correct values
assert modelled_tides_df.tide_model.unique().tolist() == models
Expand All @@ -180,7 +182,8 @@ def test_model_tides_multiplemodels(measured_tides_ds, models, output_format):

elif output_format == "wide":
# Verify output has correct columns
assert modelled_tides_df.columns[2:].tolist() == models
assert modelled_tides_df.index.names == ["time", "x", "y"]
assert modelled_tides_df.columns.tolist() == models

# Verify output has same length as orginal timesteps
assert len(modelled_tides_df.index) == len(measured_tides_ds.time)
Expand Down Expand Up @@ -209,6 +212,95 @@ def test_model_tides_units(measured_tides_ds, units, expected_range, expected_dt
assert modelled_tides_df.tide_m.dtype == expected_dtype


# Run test for each combination of mode, output format, and one or
# multiple tide models
@pytest.mark.parametrize(
"mode, models, output_format",
[
("one-to-many", ["FES2014"], "long"),
("one-to-one", ["FES2014"], "long"),
("one-to-many", ["FES2014"], "wide"),
("one-to-one", ["FES2014"], "wide"),
("one-to-many", ["FES2014", "HAMTIDE11"], "long"),
("one-to-one", ["FES2014", "HAMTIDE11"], "long"),
("one-to-many", ["FES2014", "HAMTIDE11"], "wide"),
("one-to-one", ["FES2014", "HAMTIDE11"], "wide"),
],
)
def test_model_tides_mode(mode, models, output_format):
# Input params
x = [122.14, 122.30, 122.12]
y = [-17.91, -17.92, -18.07]
times = pd.date_range("2020", "2021", periods=3)

# Model tides
modelled_tides_df = model_tides(
x=x,
y=y,
time=times,
mode=mode,
output_format=output_format,
model=models,
)

if mode == "one-to-one":
if output_format == "wide":
# Should have the same number of rows as input x, y, times
assert len(modelled_tides_df.index) == len(x)
assert len(modelled_tides_df.index) == len(times)

# Output indexes should match order of input x, y, times
assert all(modelled_tides_df.index.get_level_values("time") == times)
assert all(modelled_tides_df.index.get_level_values("x") == x)
assert all(modelled_tides_df.index.get_level_values("y") == y)

elif output_format == "long":
# In "long" format, the number of x, y points multiplied by
# the number of tide models
assert len(modelled_tides_df.index) == len(x) * len(models)

# Verify index values match expected x, y, time order
assert all(
modelled_tides_df.index.get_level_values("time")
== np.tile(times, len(models))
)
assert all(
modelled_tides_df.index.get_level_values("x") == np.tile(x, len(models))
)
assert all(
modelled_tides_df.index.get_level_values("y") == np.tile(y, len(models))
)

if mode == "one-to-many":
if output_format == "wide":
# In "wide" output format, the number of rows should equal
# the number of x, y points multiplied by timesteps
assert len(modelled_tides_df.index) == len(x) * len(times)

# TODO: Work out what order rows should be returned in in
# "one-to-many" and "wide" mode

elif output_format == "long":
# In "long" output format, the number of rows should equal
# the number of x, y points multiplied by timesteps and
# the number of tide models
assert len(modelled_tides_df.index) == len(x) * len(times) * len(models)

# Verify index values match expected x, y, time order
assert all(
modelled_tides_df.index.get_level_values("time")
== np.tile(times, len(x) * len(models))
)
assert all(
modelled_tides_df.index.get_level_values("x")
== np.tile(np.repeat(x, len(times)), len(models))
)
assert all(
modelled_tides_df.index.get_level_values("y")
== np.tile(np.repeat(y, len(times)), len(models))
)


# Run tests for default and custom resolutions
@pytest.mark.parametrize("resolution", [None, "custom"])
def test_pixel_tides(satellite_ds, measured_tides_ds, resolution):
Expand Down
Loading

0 comments on commit b26dc86

Please sign in to comment.