- http://cs233.stanford.edu/ (Leo Guibas)
- http://graphics.stanford.edu/courses/cs268-16-fall/ (Leo Guibas)
- http://groups.csail.mit.edu/gdpgroup/6838_spring_2019.html (Justin Solomon)
- https://cse291-i.github.io/ (Hao Su)
- http://ddg.cs.columbia.edu/SGP2014/LaplaceBeltrami.pdf
- https://graphics.stanford.edu/courses/cs468-13-spring/schedule.html (Differential Geometry for Computer Science)
- https://cosmolearning.org/video-lectures/differential-geometry-curves/ (Justin Solomon)
- Computer graphics course by Keenan: https://www.youtube.com/playlist?list=PL9_jI1bdZmz2emSh0UQ5iOdT2xRHFHL7E
- http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node2.html
- http://graphics.stanford.edu/courses/cs205a/ (Justin Solomon)
- http://www.pmp-book.org/
- https://www-users.cs.umn.edu/~saad/PDF/umsi-2009-31.pdf
- https://github.com/timzhang642/3D-Machine-Learning#3d_synthesis
- Differntial Geometric of Curves and Surfaces (Do Carmo): https://www.slader.com/textbook/9780132125895-differential-geometry-of-curves-and-surfaces/88/exercises/1/
- Elementary Differential Geometry (Andrew Pressley)
- Non-Euclidean Methods in Machine Learning (http://graphics.stanford.edu/courses/cs468-20-fall/index.html)
- https://sites.math.rutgers.edu/~zchan/432/info.html (Do Carmo)
- http://faculty.bard.edu/~belk/math352f11/ (Do Carmo)
- https://www.math.upenn.edu/~shiydong/spring12.html (Do Carmo)
- http://web.math.ucsb.edu/~shoseto/teaching/147A/ (Andrew Pressley)
- http://brickisland.net/DDGSpring2016/ (Discrete Differential Geometry at CMU in Spring 2016)
- https://graphics.stanford.edu/courses/cs468-13-spring/schedule.html
- http://www.supermath.info/DifferentialGeometry.html (James cook)
- https://laurentlessard.com/teaching/524-intro-to-optimization/ (Wisconsin Madison)
- http://www.stat.cmu.edu/~ryantibs/convexopt-S15/
- https://optimization.discovery.wisc.edu/graduate-studies/optimization-courses/
- https://laurentlessard.com/teaching/532-matrix-methods/
- http://graphics.stanford.edu/courses/cs468-20-fall/schedule.html
- Numerical Optimization (Nocedal)
- Convex Optimization (Boyd)
- Optimization Models (Calafiore, Ghaoui)
- Statistical Inference (Casella, Berger)
- MIT OCW, Gilbert Strang https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/index.htm
- Stanford, Linear Dynamical System https://see.stanford.edu/Course/EE263
- https://www.youtube.com/watch?v=Ikl1wnwIOmM&list=PL_a9tY9IhJuPDEDq97tq0uKXpsTZYBIXe&ab_channel=LadislavKavan
- https://github.com/oseledets/nla2020 [Numerical Linear Algebra]
- Introduction to Linear Algebra, Gilbert Strang
- Linear Algebra Done Right, Sheldon Axler
- http://tutorial.math.lamar.edu/Classes/CalcIII/CalcIII.aspx
- https://ocw.mit.edu/courses/mathematics/18-02-multivariable-calculus-fall-2007/
- https://www.khanacademy.org/math/multivariable-calculus (good visualization)
- Calculas, Thomas Finney
- Kevin Murphy
- CM Bishop
- Phil Thomas course https://people.cs.umass.edu/~pthomas/courses/CMPSCI_687_Fall2019.html
- https://ocw.mit.edu/resources/res-18-009-learn-differential-equations-up-close-with-gilbert-strang-and-cleve-moler-fall-2015/index.htm
- https://ocw.mit.edu/courses/mathematics/18-303-linear-partial-differential-equations-fall-2006/index.htm
- Advanced Engineering Mathematics, Erwin Kreyszig.
- https://www.cs.cornell.edu/courses/cs4780/2018fa/page18/
- (Kernel Methods in Machine Learning)[http://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/course/2021mva/index.html]
- [Shape analysis (spring 2019), Justin Solomon](http://groups.csail.mit.edu/gdpgroup/6838_spring_2019.html)
- [Computer Graphics (Fall 202), Keenan Krane](http://15462.courses.cs.cmu.edu/fall2020/)
- [CS 468: Differential Geometry for Computer Science (spring 2013)](https://www.youtube.com/playlist?list=PLQ3UicqQtfNvPmZftPyQ-qK1wdXBxj86W)
- [Symposium of Graphics Proessing](https://www.youtube.com/playlist?list=PLUykN3u3Z3NXLOeaUJmZHdEJ67KvpNzK2)
- Tutorial on libgl with python: https://mybinder.org/v2/gh/libigl/libigl-python-bindings/master?filepath=tutorial%2Ftutorials.ipynb
- https://github.com/Hippogriff/smgp (geometry modeling course and solution from ETH https://github.com/eth-igl/GP2018-Assignments)
- https://github.com/eth-igl/GP2020-Assignments
- https://github.com/danielepanozzo/gp
- https://github.com/alecjacobson/geometry-processing-parameterization (This seems to me the best geometry processing coursework.)
- [First principles of computer vision](https://www.youtube.com/channel/UCf0WB91t8Ky6AuYcQV0CcLw?app=desktop)
- [Multi-view computer vision](https://www.youtube.com/playlist?list=PLEB45naDUsF2vpvdxZ72Jjl8ZEKISv4Nh)
- [CS231A: Computer Vision, From 3D Reconstruction to Recognition](https://web.stanford.edu/class/cs231a/)