Skip to content

Commit

Permalink
big squash
Browse files Browse the repository at this point in the history
  • Loading branch information
epolack committed Feb 8, 2024
1 parent b9b052e commit 1345936
Show file tree
Hide file tree
Showing 53 changed files with 822 additions and 405 deletions.
5 changes: 4 additions & 1 deletion docs/src/developer/data_structures.md
Original file line number Diff line number Diff line change
Expand Up @@ -140,10 +140,13 @@ For example let us check the normalization of the first eigenfunction
at the first ``k``-point in reciprocal space:

```@example data_structures
ψtest = scfres.ψ[1][:, 1]
ψtest = scfres.ψ[1][:, :, 1]
sum(abs2.(ψtest))
```

The first index of `ψtest` is the component (e.g., the spin) and the second is the
``G``-component.

We now perform an IFFT to get ψ in real space. The ``k``-point has to be
passed because ψ is expressed on the ``k``-dependent basis.
Again the function is normalised:
Expand Down
5 changes: 3 additions & 2 deletions examples/custom_potential.jl
Original file line number Diff line number Diff line change
Expand Up @@ -72,8 +72,9 @@ compute_forces(scfres)
tot_local_pot = DFTK.total_local_potential(scfres.ham)[:, 1, 1]; # use only dimension 1

# Extract other quantities before plotting them
ρ = scfres.ρ[:, 1, 1, 1] # converged density, first spin component
ψ_fourier = scfres.ψ[1][:, 1] # first k-point, all G components, first eigenvector
ρ = scfres.ρ[:, 1, 1, 1] # converged density, first spin component
ψ_fourier = scfres.ψ[1][1, :, 1] # first k-point, first (and only) component,
# all G components, first eigenvector

# Transform the wave function to real space and fix the phase:
ψ = ifft(basis, basis.kpoints[1], ψ_fourier)[:, 1, 1]
Expand Down
68 changes: 39 additions & 29 deletions examples/error_estimates_forces.jl
Original file line number Diff line number Diff line change
Expand Up @@ -85,50 +85,60 @@ res, occ = DFTK.select_occupied_orbitals(basis_ref, res, scfres.occupation)
# size ``N×N`` (``N`` being the number of electrons) whose solution is
# ``U = S(S^*S)^{-1/2}`` where ``S`` is the overlap matrix ``ψ^*ϕ``.
function compute_error(basis, ϕ, ψ)
map(zip(ϕ, ψ)) do (ϕk, ψk)
ϕ = to_composite_σG(basis, ϕ)
ψ = to_composite_σG(basis, ψ)
map(zip(basis.kpoints, ϕ, ψ)) do (kpt, ϕk, ψk)
S = ψk'ϕk
U = S*(S'S)^(-1/2)
ϕk - ψk*U
from_composite_σG(basis, kpt, ϕk - ψk*U)
end
end
err = compute_error(basis_ref, ψr, ψ_ref);

# - Compute ``{\boldsymbol M}^{-1}R(P)`` with ``{\boldsymbol M}^{-1}`` defined in [^CDKL2021]:
P = [PreconditionerTPA(basis_ref, kpt) for kpt in basis_ref.kpoints]
map(zip(P, ψr)) do (Pk, ψk)
DFTK.precondprep!(Pk, ψk)
map(zip(P, ψr, basis_ref.kpoints)) do (Pk, ψk, kpt)
DFTK.precondprep!(Pk, to_composite_σG(basis_ref, kpt, ψk))
end
function apply_M(φk, Pk, δφnk, n)
DFTK.proj_tangent_kpt!(δφnk, φk)
δφnk = sqrt.(Pk.mean_kin[n] .+ Pk.kin) .* δφnk
DFTK.proj_tangent_kpt!(δφnk, φk)
δφnk = sqrt.(Pk.mean_kin[n] .+ Pk.kin) .* δφnk
DFTK.proj_tangent_kpt!(δφnk, φk)
function apply_M(basis, kpt, φk, Pk, δφnk, n)
fact = reshape(sqrt.(Pk.mean_kin[n] .+ Pk.kin), size(δφnk)...)
DFTK.proj_tangent_kpt!(δφnk, basis, kpt, φk)
δφnk = fact .* δφnk
DFTK.proj_tangent_kpt!(δφnk, basis, kpt, φk)
δφnk = fact .* δφnk
DFTK.proj_tangent_kpt!(δφnk, basis, kpt, φk)
end
function apply_inv_M(φk, Pk, δφnk, n)
DFTK.proj_tangent_kpt!(δφnk, φk)
op(x) = apply_M(φk, Pk, x, n)
function apply_inv_M(basis, kpt, φk, Pk, δφnk, n)
DFTK.proj_tangent_kpt!(δφnk, basis, kpt, φk)
op(x) = let
x = from_composite_σG(basis, kpt, x)
to_composite_σG(basis, kpt, apply_M(basis, kpt, φk, Pk, x, n))
end
function f_ldiv!(x, y)
x .= DFTK.proj_tangent_kpt(y, φk)
x_σG = from_composite_σG(basis, kpt, x)
y_σG = from_composite_σG(basis, kpt, y)
x_σG .= DFTK.proj_tangent_kpt(basis, kpt, y_σG, φk)
x ./= (Pk.mean_kin[n] .+ Pk.kin)
DFTK.proj_tangent_kpt!(x, φk)
DFTK.proj_tangent_kpt!(x_σG, basis, kpt, φk)
x
end
J = LinearMap{eltype(φk)}(op, size(δφnk, 1))
δφnk = cg(J, δφnk; Pl=DFTK.FunctionPreconditioner(f_ldiv!),
verbose=false, reltol=0, abstol=1e-15)
DFTK.proj_tangent_kpt!(δφnk, φk)
J = LinearMap{eltype(φk)}(op, prod(size(δφnk)[1:2]))
δφnk_vec = to_composite_σG(basis, kpt, δφnk)
δφnk_vec = cg(J, δφnk_vec; Pl=DFTK.FunctionPreconditioner(f_ldiv!),
verbose=false, reltol=0, abstol=1e-15)
DFTK.proj_tangent_kpt!(δφnk, basis, kpt, φk)
end
function apply_metric(φ, P, δφ, A::Function)
function apply_metric(basis, φ, P, δφ, A::Function)
map(enumerate(δφ)) do (ik, δφk)
Aδφk = similar(δφk)
φk = φ[ik]
for n = 1:size(δφk,2)
Aδφk[:,n] = A(φk, P[ik], δφk[:,n], n)
for n = 1:size(δφk, 3)
Aδφk[:, :, n] = A(basis, basis.kpoints[ik], φk, P[ik], δφk[:, :, n], n)
end
Aδφk
end
end
Mres = apply_metric(ψr, P, res, apply_inv_M);
Mres = apply_metric(basis, ψr, P, res, apply_inv_M);

# We can now compute the modified residual ``R_{\rm Schur}(P)`` using a Schur
# complement to approximate the error on low-frequencies[^CDKL2021]:
Expand All @@ -151,14 +161,14 @@ resLF = DFTK.transfer_blochwave(res, basis_ref, basis)
resHF = res - DFTK.transfer_blochwave(resLF, basis, basis_ref);

# - Compute ``{\boldsymbol M}^{-1}_{22}R_2(P)``:
e2 = apply_metric(ψr, P, resHF, apply_inv_M);
e2 = apply_metric(basis, ψr, P, resHF, apply_inv_M);

# - Compute the right hand side of the Schur system:
## Rayleigh coefficients needed for `apply_Ω`
Λ = map(enumerate(ψr)) do (ik, ψk)
Hk = hamr.blocks[ik]
Hψk = Hk * ψk
ψk'Hψk
Λ = map(enumerate(zip(ψr, hamr * ψr))) do (ik, (ψk, Hψk))
ψk = to_composite_σG(basis, basis.kpoints[ik], ψk)
Hψk = to_composite_σG(basis, basis.kpoints[ik], Hψk)
from_composite_σG(basis, basis.kpoints[ik], ψk'Hψk)
end
ΩpKe2 = DFTK.apply_Ω(e2, ψr, hamr, Λ) .+ DFTK.apply_K(basis_ref, e2, ψr, ρr, occ)
ΩpKe2 = DFTK.transfer_blochwave(ΩpKe2, basis_ref, basis)
Expand Down Expand Up @@ -204,7 +214,7 @@ end;
# the actual error ``P-P_*``. Usually this is of course not the case, but this
# is the "best" improvement we can hope for with a linearisation, so we are
# aiming for this precision.
df_err = df(basis_ref, occ, ψr, DFTK.proj_tangent(err, ψr), ρr)
df_err = df(basis_ref, occ, ψr, DFTK.proj_tangent(basis, err, ψr), ρr)
forces["F(P) - df(P)⋅(P-P_*)"] = f - df_err
relerror["F(P) - df(P)⋅(P-P_*)"] = compute_relerror(f - df_err);

Expand Down
9 changes: 5 additions & 4 deletions examples/gross_pitaevskii.jl
Original file line number Diff line number Diff line change
Expand Up @@ -57,8 +57,9 @@ scfres.energies
# We use the opportunity to explore some of DFTK internals.
#
# Extract the converged density and the obtained wave function:
ρ = real(scfres.ρ)[:, 1, 1, 1] # converged density, first spin component
ψ_fourier = scfres.ψ[1][:, 1]; # first k-point, all G components, first eigenvector
ρ = real(scfres.ρ)[:, 1, 1, 1] # converged density, first spin component
ψ_fourier = scfres.ψ[1][1, :, 1] # first k-point, first (and only) component,
# all G components, first eigenvector

# Transform the wave function to real space and fix the phase:
ψ = ifft(basis, basis.kpoints[1], ψ_fourier)[:, 1, 1]
Expand Down Expand Up @@ -93,7 +94,7 @@ E, ham = energy_hamiltonian(basis, scfres.ψ, scfres.occupation; ρ=scfres.ρ)
H = ham.blocks[1];

# `H` can be used as a linear operator (efficiently using FFTs), or converted to a dense matrix:
ψ11 = scfres.ψ[1][:, 1] # first k-point, first eigenvector
ψ11 = scfres.ψ[1][1, :, 1] # first k-point, first component, first eigenvector
Hmat = Array(H) # This is now just a plain Julia matrix,
## which we can compute and store in this simple 1D example
@assert norm(Hmat * ψ11 - H * ψ11) < 1e-10
Expand All @@ -107,4 +108,4 @@ A[1, end] = A[end, 1] = -1
K = A / dx^2 / 2
V = Diagonal(pot.(x) + C .* α .*.^-1)))
H_findiff = K + V;
maximum(abs.(H_findiff*ψ - (dot(ψ, H_findiff*ψ) / dot(ψ, ψ)) * ψ))
maximum(abs, H_findiff*ψ - (dot(ψ, H_findiff*ψ) / dot(ψ, ψ)) * ψ)
24 changes: 19 additions & 5 deletions ext/DFTKGenericLinearAlgebraExt/DFTKGenericLinearAlgebraExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -29,29 +29,29 @@ end
DFTK.default_primes(::Any) = (2, )

# Generic fallback function, Float32 and Float64 specialization in fft.jl
function DFTK.build_fft_plans!(tmp::AbstractArray{<:Complex})
function DFTK.build_fft_plans!(tmp::AbstractArray{<:Complex}; region=1:ndims(tmp))
# Note: FourierTransforms has no support for in-place FFTs at the moment
# ... also it's extension to multi-dimensional arrays is broken and
# the algo only works for some cases
@assert all(ispow2, size(tmp))

# opFFT = AbstractFFTs.plan_fft(tmp) # TODO When multidim works
# opFFT = AbstractFFTs.plan_fft(tmp) # TODO When multidim works
# opBFFT = inv(opFFT).p
opFFT = generic_plan_fft(tmp) # Fallback for now
opFFT = generic_plan_fft(tmp) # Fallback for now
opBFFT = generic_plan_bfft(tmp)
# TODO Can be cut once FourierTransforms supports AbstractFFTs properly
ipFFT = DummyInplace{typeof(opFFT)}(opFFT)
ipBFFT = DummyInplace{typeof(opBFFT)}(opBFFT)

ipFFT, opFFT, ipBFFT, opBFFT
(; ipFFT, opFFT, ipBFFT, opBFFT)
end

struct GenericPlan{T}
subplans
factor::T
end

function Base.:*(p::GenericPlan, X::AbstractArray)
function Base.:*(p::GenericPlan, X::AbstractArray{T, 3}) where {T}
pl1, pl2, pl3 = p.subplans
ret = similar(X)
for i = 1:size(X, 1), j = 1:size(X, 2)
Expand Down Expand Up @@ -86,4 +86,18 @@ function generic_plan_bfft(data::AbstractArray{T, 3}) where {T}
plan_bfft(data[1, 1, :])], T(1))
end

# TODO: Let's not bother with multicomponents yet.
function generic_plan_fft(data::AbstractArray{T, 4}) where {T}
@assert size(data, 1) == 1
generic_plan_fft(data[1, :, :, :])
end
function generic_plan_bfft(data::AbstractArray{T, 4}) where {T}
@assert size(data, 1) == 1
generic_plan_bfft(data[1, :, :, :])
end
function Base.:*(p::GenericPlan, X::AbstractArray{T, 4}) where {T}
@assert size(X, 1) == 1
reshape(p * X[1, :, :, :], size(X)...)
end

end
4 changes: 2 additions & 2 deletions ext/DFTKIntervalArithmeticExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -42,8 +42,8 @@ function _is_well_conditioned(A::AbstractArray{<:Interval}; kwargs...)
end

function symmetry_operations(lattice::AbstractMatrix{<:Interval}, atoms, positions,
magnetic_moments=[];
tol_symmetry=max(SYMMETRY_TOLERANCE, maximum(radius, lattice)))
magnetic_moments=[];
tol_symmetry=max(SYMMETRY_TOLERANCE, maximum(radius, lattice)))
@assert tol_symmetry < 1e-2
symmetry_operations(IntervalArithmetic.mid.(lattice), atoms, positions, magnetic_moments;
tol_symmetry)
Expand Down
6 changes: 6 additions & 0 deletions ext/DFTKJLD2Ext.jl
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,12 @@ function load_scfres_jld2(jld, basis; skip_hamiltonian, strict)
"($(jld["n_spin_components"])) and supplied basis " *
"($(basis.model.n_spin_components))")
end
if jld["n_components"] != basis.model.n_components
consistent_kpts = false
errormsg = ("Mismatch in number of spin components between file " *
"($(jld["n_components"])) and supplied basis " *
"($(basis.model.n_components))")
end
end
errormsg = MPI.bcast(errormsg, 0, MPI.COMM_WORLD)
isempty(errormsg) || error(errormsg)
Expand Down
14 changes: 8 additions & 6 deletions ext/DFTKWriteVTKExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -24,12 +24,14 @@ function DFTK.save_scfres(::Val{:vts}, filename::AbstractString, scfres::NamedTu
ψblock = gather_kpts_block(scfres.basis, ψblock_dist)

if mpi_master()
for ik = 1:length(basis.kpoints), n = 1:size(ψblock, 2)
kpt_n_G = length(G_vectors(basis, basis.kpoints[ik]))
ψnk_real = ifft(basis, basis.kpoints[ik], ψblock[1:kpt_n_G, n, ik])
prefix = @sprintf "ψ_k%03i_n%03i" ik n
vtkfile["$(prefix)_real"] = real.(ψnk_real)
vtkfile["$(prefix)_imag"] = imag.(ψnk_real)
for ik = 1:length(basis.kpoints)
for σ = 1:basis.model.n_components, n = 1:size(ψblock, 3)
kpt_n_G = length(G_vectors(basis, basis.kpoints[ik]))
ψσnk_real = ifft(basis, basis.kpoints[ik], ψblock[:, 1:kpt_n_G, n, ik])
prefix = @sprintf "ψ_k%03i_n%03i_σ%03i" ik n σ
vtkfile["$(prefix)_real"] = real.(ψσnk_real)
vtkfile["$(prefix)_imag"] = imag.(ψσnk_real)
end
end
end
end
Expand Down
3 changes: 3 additions & 0 deletions src/DFTK.jl
Original file line number Diff line number Diff line change
Expand Up @@ -75,6 +75,8 @@ export compute_fft_size
export G_vectors, G_vectors_cart, r_vectors, r_vectors_cart
export Gplusk_vectors, Gplusk_vectors_cart
export Kpoint
export to_composite_σG
export from_composite_σG
export ifft
export irfft
export ifft!
Expand All @@ -86,6 +88,7 @@ include("Model.jl")
include("structure.jl")
include("bzmesh.jl")
include("PlaneWaveBasis.jl")
include("Psi.jl")
include("fft.jl")
include("orbitals.jl")
include("input_output.jl")
Expand Down
16 changes: 14 additions & 2 deletions src/Model.jl
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,10 @@ struct Model{T <: Real, VT <: Real}
n_electrons::Union{Int, Nothing}
εF::Union{T, Nothing}

# Option for multicomponents computations.
# TODO: Planed to replace current handling of spins, as it will allow full spin computations.
n_components::Int

# spin_polarization values:
# :none No spin polarization, αα and ββ density identical,
# αβ and βα blocks zero, 1 spin component treated explicitly
Expand Down Expand Up @@ -106,7 +110,8 @@ function Model(lattice::AbstractMatrix{T},
terms=[Kinetic()],
temperature=zero(T),
smearing=temperature > 0 ? Smearing.FermiDirac() : Smearing.None(),
spin_polarization=determine_spin_polarization(magnetic_moments),
n_components=1,
spin_polarization=default_spin_polarization(magnetic_moments, n_components),
symmetries=default_symmetries(lattice, atoms, positions, magnetic_moments,
spin_polarization, terms),
) where {T <: Real}
Expand Down Expand Up @@ -178,7 +183,8 @@ function Model(lattice::AbstractMatrix{T},
Model{T,value_type(T)}(model_name,
lattice, recip_lattice, n_dim, inv_lattice, inv_recip_lattice,
unit_cell_volume, recip_cell_volume,
n_electrons, εF, spin_polarization, n_spin, temperature, smearing,
n_electrons, εF, n_components, spin_polarization, n_spin,
temperature, smearing,
atoms, positions, atom_groups, terms, symmetries)
end
function Model(lattice::AbstractMatrix{<:Integer}, atoms::Vector{<:Element},
Expand Down Expand Up @@ -224,6 +230,7 @@ function Model{T}(model::Model;
model.temperature,
model.smearing,
model.εF,
model.n_components,
model.spin_polarization,
model.symmetries,
# Can be safely disabled: this has been checked for model
Expand All @@ -249,6 +256,11 @@ normalize_magnetic_moment(mm::AbstractVector)::Vec3{Float64} = mm
"""Number of valence electrons."""
n_electrons_from_atoms(atoms) = sum(n_elec_valence, atoms; init=0)

function default_spin_polarization(magnetic_moments, n_components)
n_components > 1 && return :spinless
determine_spin_polarization(magnetic_moments)
end

"""
Default logic to determine the symmetry operations to be used in the model.
"""
Expand Down
11 changes: 10 additions & 1 deletion src/PlaneWaveBasis.jl
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,11 @@ struct PlaneWaveBasis{T,
ipBFFT
fft_normalization::T # fft = fft_normalization * FFT
ifft_normalization::T # ifft = ifft_normalization * BFFT
# Multicomponents plans
opFFT_mc
ipFFT_mc
opBFFT_mc
ipBFFT_mc

# "cubic" basis in reciprocal and real space, on which potentials and densities are stored
G_vectors::T_G_vectors
Expand Down Expand Up @@ -250,7 +255,10 @@ function PlaneWaveBasis(model::Model{T}, Ecut::Real, fft_size::Tuple{Int, Int, I

# Setup FFT plans
Gs = to_device(architecture, G_vectors(fft_size))
(ipFFT, opFFT, ipBFFT, opBFFT) = build_fft_plans!(similar(Gs, Complex{T}, fft_size))
(; ipFFT, opFFT, ipBFFT, opBFFT) = build_fft_plans!(similar(Gs, Complex{T}, fft_size))
# strided FFT plans for multicomponents
ipFFT_mc, opFFT_mc, ipBFFT_mc, opBFFT_mc =
build_fft_plans!(similar(Gs, Complex{T}, model.n_components, fft_size...); region=2:4)

# Normalization constants
# fft = fft_normalization * FFT
Expand Down Expand Up @@ -338,6 +346,7 @@ function PlaneWaveBasis(model::Model{T}, Ecut::Real, fft_size::Tuple{Int, Int, I
Ecut, variational,
opFFT, ipFFT, opBFFT, ipBFFT,
fft_normalization, ifft_normalization,
opFFT_mc, ipFFT_mc, opBFFT_mc, ipBFFT_mc,
Gs, r_vectors,
kpoints, kweights, kgrid,
kcoords_global, kweights_global,
Expand Down
Loading

0 comments on commit 1345936

Please sign in to comment.