Skip to content

2nd place solution for the Generative Interior Design 2024 competition

License

Notifications You must be signed in to change notification settings

Lavreniuk/generative-interior-design

Repository files navigation

StableDesign for generative interior design


Mykola Lavreniuk, Bartosz Ludwiczuk

🏆 2nd Place Solution in the Generative Interior Design 2024 Competition!

Proud to announce our 2nd place achievement! For a detailed review of our competition journey, check out our article on Medium.

Dataset creation

These script are extended version of code from bnb-dataset

  1. Download listing from airbnb
python search_listings_with_price.py --location data/cites_world.txt 
  1. Download image-metadata from each listing
python download_listings.py --listings data/listings --output data/merlin --with_photo --num_splits 1 --start 0
  1. Create a single TSV file
python extract_photo_metadata.py --merlin data/merlin/ --output data/bnb-dataset-raw-2ndpart.tsv
  1. Download images Currently, in the same script images are downsampled to have size 768x. Note: For final run, we downloaded ~300k images.
python download_images.py --csv_file data/bnb-dataset-raw-2ndpart.tsv --output /media/blcv/drive_2TB/genai/bnb/data/images_price --correspondance /tmp/cache-download-images/ --num_parts 1 --num_splits 4 --num_procs 4 --start 0
  1. Extract features for interior/outdoor detection
python detect_room.py --output data/places365/detect-25koffers.tsv --images /media/blcv/drive_2TB/genai/bnb/data/images_price
  1. Extract TSV with all indoor images
python extract_indoor.py --output data/bnb-dataset-indoor-25koffers.tsv --detection data/places365/25offers
  1. Create a directory only containing indoor images

Creating empty rooms

run get_empty_room.py to remove furniture from collected images (set correct path inside the script). For each inout image 3 images would be saved:

  • cleaned RGB image
  • segmentation mask of clean image
  • depth estimation for clean image

Preparing the dataset

run get_captions.py to retrieve captions for the images using llava-1.5. Use original images, with furniture.
run prepare_train_jsonl.py to generate train.jsonl for subsequent training

Folder Structure:
fill50k/
├── images/
├── conditioning_images/
├── diffusers/
├── fill50k.py
├── image_0.jpg
├── image_1.jpg
├── train.jsonl
├── train_controlnet.py (copy from diffusers)
└── train_text_to_image_lora.py (copy from diffusers)

Training

ControlNet for segmentation (as conditioning_images use segmentation images)

rm -rf ~/.cache/huggingface/datasets/
accelerate config
CUDA_VISIBLE_DEVICES=0 accelerate launch --mixed_precision="bf16" train_controlnet.py  --checkpointing_steps=20000 --validation_steps=10000 --pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5"  --output_dir=model --resolution=512  --learning_rate=1e-5  --validation_image "./image_0.jpg" "./image_1.jpg"  --validation_prompt "A Bauhaus-inspired living room with a sleek black leather sofa, a tubular steel coffee table exemplifying modernist design, and a geometric patterned rug adding a touch of artistic flair." "A glamorous master bedroom in Hollywood Regency style, boasting a plush tufted headboard, mirrored furniture reflecting elegance, luxurious fabrics in rich textures, and opulent gold accents for a touch of luxury."  --train_batch_size=4 --dataset_name=fill50k.py --controlnet_model_name_or_path "BertChristiaens/controlnet-seg-room" --report_to wandb --gradient_accumulation_steps=1 --mixed_precision="bf16" --num_train_epochs=10

ControlNet for depth (as conditioning_images use depth-estimation images)

rm -rf ~/.cache/huggingface/datasets/
accelerate config
CUDA_VISIBLE_DEVICES=0 accelerate launch --mixed_precision="bf16" train_controlnet.py  --checkpointing_steps=20000 --validation_steps=10000 --pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5"  --output_dir=model --resolution=512  --learning_rate=1e-5  --validation_image "./image_0.jpg" "./image_1.jpg"  --validation_prompt "A Bauhaus-inspired living room with a sleek black leather sofa, a tubular steel coffee table exemplifying modernist design, and a geometric patterned rug adding a touch of artistic flair." "A glamorous master bedroom in Hollywood Regency style, boasting a plush tufted headboard, mirrored furniture reflecting elegance, luxurious fabrics in rich textures, and opulent gold accents for a touch of luxury."  --train_batch_size=4 --dataset_name=fill50k.py --controlnet_model_name_or_path "lllyasviel/sd-controlnet-depth " --report_to wandb --gradient_accumulation_steps=1 --mixed_precision="bf16" --num_train_epochs=10

Lora

CUDA_VISIBLE_DEVICES=0 accelerate launch --mixed_precision="bf16" train_text_to_image_lora.py  --checkpointing_steps=20000 --pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5"  --output_dir=model_lora --resolution=512  --learning_rate=1e-4 --validation_prompt "A Bauhaus-inspired living room with a sleek black leather sofa, a tubular steel coffee table exemplifying modernist design, and a geometric patterned rug adding a touch of artistic flair."  --train_batch_size=4 --dataset_name=fill50k.py --random_flip --gradient_accumulation_steps=1 --mixed_precision="bf16" --num_train_epochs=10 --rank=64 --report_to wandb

About

2nd place solution for the Generative Interior Design 2024 competition

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published